Core Microbiome. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Core Microbiome - Группа авторов страница 8

Core Microbiome - Группа авторов

Скачать книгу

but has not been possible yet. Here, we describe the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometers of oceans. The two most abundant phylotypes are co-localized specifically with the corals’ endosymbiotic algae and symbiontcontaining host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes. This book primarily focuses on selecting positive and effective interactive core microbiome that are both phenotypically and genotypically very adaptive and sustainable, which further improve crop quality and productivity vis-à-vis sustainable agriculture. The bioengineering concept for rhizosphere improvement has also been discussed in one of the chapters. The book also highlights the structure, characterization, and biotechnological application of aquatic core microbiomes.

       Javid A. Parray

       Robeena Sarah, Nida Idrees, and Baby Tabassum

       Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College, Rampur 244901, India

      1.1 Introduction

      Medicinal plants are essentially considered complex and dynamic when used in systems for remedial therapy. Hence, their chemical composition depends upon several factors, such as botanical species, genetically determined chemotypes, anatomically a part of the plant (e.g., seed, flower, root, and leaf), storage, sun exposure, humidity, kind of ground, time of harvesting, and ecological area. Moreover, biogenic factors, such as the fungal and bacterial endophytes related to diverse parts of the plant, can influence their chemical composition. In recent years, the research and study of the multiple interactions occurring between endophytes and medicinal plants have modernized our knowledge of plant biology, with entirely unexpected and remarkable application perspectives: the probability of modulating, amplifying, or interfering within the biosynthesis of phytoconstituents (e.g., terpenes, polyphenols, and alkamides), but also to engineer the synthesis of latest molecules directly, for instance with antibiotic activity.

      1.2 Antimicrobial Properties of Medicinal Plants with Particular Reference to Neem (Azadirachtaindica)

      Moreover, medicinal plants also can play an elementary function against rising antibiotic resistance both directly for their antimicrobial activities (e.g., antibacterial, antiviral, antifungal, and antiparasitic ones) and indirectly by reducing resistance against antibiotics.

      Figure 1.1 Medicinally important parts of the Azadirachta indica (neem) tree showing flowers; fruits; twigs; bark and leaves.

      1.3 Current Trends on Bioactive Metabolites from Endophytic Microbiota of Medicinal Plants

Скачать книгу