Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 29

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

upper R Subscript g g Baseline left-parenthesis tau right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis negative u right-parenthesis left-bracket h left-parenthesis t minus u right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis t minus u right-parenthesis right-bracket d u equals h left-parenthesis tau right-parenthesis asterisk h left-parenthesis negative tau right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis tau right-parenthesis (1.188)

       upper S Subscript g g Baseline left-parenthesis omega right-parenthesis equals bold-italic upper H left-parenthesis omega right-parenthesis bold-italic upper H Superscript asterisk Baseline left-parenthesis omega right-parenthesis upper S Subscript f f Baseline left-parenthesis omega right-parenthesis equals StartAbsoluteValue bold-italic upper H left-parenthesis omega right-parenthesis EndAbsoluteValue squared upper S Subscript f f Baseline left-parenthesis omega right-parenthesis (1.189)

      So we know now the autospectrum of the system excited by random response. Next we investigate the cross correlation between input and output.

       StartLayout 1st Row upper R Subscript f g Baseline equals upper E left-bracket f left-parenthesis t right-parenthesis g left-parenthesis t plus tau right-parenthesis right-bracket equals upper E left-bracket f left-parenthesis t right-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis f left-parenthesis t plus tau minus tau 1 right-parenthesis d tau 1 right-bracket EndLayout (1.190)

       StartLayout 1st Row equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis upper E left-bracket f left-parenthesis t right-parenthesis f left-parenthesis t plus tau minus tau 1 right-parenthesis right-bracket d tau 1 EndLayout (1.191)

      This expression can be simplified by assuming the expected value to be the auto-convolution with argument τ−τ1 to:

       upper R Subscript f g Baseline equals integral Subscript negative normal infinity Superscript normal infinity Baseline h left-parenthesis tau 1 right-parenthesis upper R Subscript f f Baseline left-parenthesis tau minus tau 1 right-parenthesis d tau 1 equals h left-parenthesis tau right-parenthesis asterisk upper R Subscript f f Baseline left-parenthesis tau right-parenthesis (1.192)

      Converting this into the frequency domain gives:

       bold-italic upper S Subscript f g Baseline left-parenthesis omega right-parenthesis equals bold-italic upper H left-parenthesis omega right-parenthesis upper S Subscript f f Baseline left-parenthesis omega right-parenthesis (1.193)

      This is a very important result: every transfer function (also using deterministic signals) can be determined by the ratio of the cross spectrum to auto spectrum.

       bold-italic upper H left-parenthesis omega right-parenthesis equals StartFraction bold-italic upper S Subscript f g Baseline left-parenthesis omega right-parenthesis Over upper S Subscript f f Baseline left-parenthesis omega right-parenthesis EndFraction (1.194)

      In principle this can also be done by using the Fourier transform (1.173), using time-limited excitation and dividing output and input FT, but the cross spectral variant is much more robust against measurement noise.

      1.7 Multiple-input–multiple-output Systems

      Mechanical set-ups with multiple degrees of freedom are multiple-input–multiple-output (MIMO) systems. The frequency response is determined by matrix inversion or solution of the matrix as shown in Equation (1.83)

Start 1 By 1 Matrix 1st Row bold-italic q left-parenthesis omega right-parenthesis EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D left-parenthesis omega right-parenthesis EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic upper F left-parenthesis omega right-parenthesis EndMatrix

      In a more general form a MIMO system is defined as a system with N input signals fn(t) and M output signals gm(t).

      Figure 1.24 Multiple-input–multiple-output (MIMO) system. Source: Alexander Peiffer.

      In the frequency domain, in the response at output m the convolution is replaced by multiplication

      Both

Скачать книгу