Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 37

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

There are several reasons for the attenuation of acoustic waves:

       Viscous damping due to inner viscosity.

       Thermal damping due to irreversible heat flow during wave propagation.

       Molecular damping due to excitation of degrees of freedom of molecules (for additional content of the gas, e.g. humidity in air).

      The damping loss η as defined in (1.68) is based on the amount of energy dissipated during one cycle of wave motion. The harmonic pressure wave performs one cycle of oscillation in one period in time T or space λ. So we get for η:

       eta equals StartFraction 1 Over 2 pi EndFraction StartFraction normal upper Delta upper E Over upper E EndFraction equals StartFraction 1 Over 2 pi EndFraction StartFraction bold-italic upper A squared minus bold-italic upper A squared e Superscript minus 2 alpha lamda Baseline Over bold-italic upper A squared EndFraction (2.56)

      For small damping the exponential function can be approximated by ex≈1+x−… providing the relationship between damping loss and fluid wave attenuation.

       eta almost-equals StartFraction 1 Over 2 pi EndFraction 2 alpha lamda with lamda equals StartFraction 2 pi Over k EndFraction (2.57)

      Hence, the attenuation can be given by:

       alpha equals eta StartFraction k Over 2 EndFraction eta equals StartFraction 2 alpha Over k EndFraction (2.58)

      An appropriate way to consider this relationship in the solution of the wave equation is to include this into a complex wavenumber k:

       bold-italic p equals bold-italic upper A e Superscript j left-parenthesis minus bold-italic k x plus omega t right-parenthesis Baseline equals bold-italic upper A e Superscript minus StartFraction eta x Over 2 EndFraction Baseline e Superscript j left-parenthesis minus k x plus omega t right-parenthesis Baseline with bold-italic k equals k left-parenthesis 1 minus j StartFraction eta Over 2 EndFraction right-parenthesis (2.59)

      This complex wavenumber naturally impacts the speed of sound

       bold-italic c equals StartFraction omega Over bold-italic k EndFraction equals StartStartFraction c 0 OverOver 1 minus j StartFraction eta Over 2 EndFraction EndEndFraction (2.60)

      and the acoustic impedance

       bold-italic z equals rho 0 bold-italic c equals StartStartFraction z 0 OverOver 1 minus j StartFraction eta Over 2 EndFraction EndEndFraction (2.61)

Quantity Symbol Formula Units Plane wave Equation
Acoustic velocity v 1jωc0∇p m/s pρ0c0 (2.35)
Acoustic impedance z p/v Pa s/m z0=ρ0c0 (2.38)
Intensity I 12Re(pv*) Pa m/s ⟨I⟩T=p^22ρ0c0 (2.47)
Energy density e J/m 3 ⟨e⟩T=p^22ρ0c02 (2.52)
Acoustic power Π Π=IA W ⟨Π⟩T=Ap^22ρ0c0 (2.43)

      2.4 Fundamental Acoustic Sources

      The radiation of sound is key to understanding how energy is introduced into wave fields. Depending on the wavelength, geometry, and dimension of the source the behavior varies. A detailed understanding of fundamental sources is helpful for the radiation of vibrating structures and thus, how they exchange acoustic energy.

      2.4.1 Monopoles – Spherical Sources

       x equals r sine theta cosine phi (2.62a)

       y equals r sine theta sine phi (2.62b)

       z equals r cosine theta (2.62c)

      Using this coordinate system and neglecting the angular components the Laplace operator Δ reads as

       normal upper Delta equals StartFraction 1 Over r squared EndFraction StartFraction partial-differential Over partial-differential r EndFraction left-parenthesis r squared StartFraction partial-differential Over partial-differential r EndFraction right-parenthesis equals StartFraction 2 Over r EndFraction StartFraction partial-differential Over partial-differential r EndFraction plus StartFraction partial-differential squared Over partial-differential 
						<noindex><p style= Скачать книгу