Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов. Александр Вячеславович Логунов

Чтение книги онлайн.

Читать онлайн книгу Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов - Александр Вячеславович Логунов страница 7

Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов - Александр Вячеславович Логунов

Скачать книгу

раскислителями

      Раскисление низкоуглеродистого металла только углеродом в вакууме не даёт возможности получить низкие концентрации кислорода, а применение водорода большей частью не находит места из-за сложности и опасности его использования.

      Поэтому применение металлических раскислителей в вакуумных агрегатах продолжает оставаться актуальным.

      Отсутствие окислительной атмосферы в вакуумных установках значительно повышает эффективность раскислителей, которые не окисляются кислородом воздуха и шлаком; основная масса присадки попадает в металл и выполняет свою функцию.

      В работе [9] было исследовано раскисление железоуглеродистых и железохромистых сплавов марганцем, кремнием, алюминием, миш-металлом, сплавом АМС и алюминием совместно с церием. Присадка Mn и Si не оказывает существенного влияния на снижение содержания кислорода в металле.

      При раскислении металла алюминием в первый момент после введения алюминия содержание кислорода заметно снижается. При выплавке сплавов как с 10, так и с 20 % Cr экспериментальные содержания кислорода лежат выше равновесных значений, следовательно, введение алюминия обеспечивает заметное раскисление металла.

      В результате раскисления алюминием содержание кислорода в металле составляло 0,002–0,003 % и 0,004–0,005 % для железоуглеродистых и железохромистых сплавов соответственно [2].

      Кроме рассмотренных выше механизмов удаления кислорода из металла в вакууме, существует и другой: кислород может удаляться путём испарения летучих субокислов некоторых компонентов. Субокислы – это низшие окислы, обладающие высокой упругостью пара.

      Количество оксидов, присутствующих в первичных материалах, может лимитироваться путём выбора поставщиков и условий на получаемые материалы. К сожалению, самые чистые, не содержащие оксиды, материалы могут быстро стать загрязнёнными большим количеством оксидов в зависимости от состава сплава и огнеупорного тигля, содержащего расплав. Химический состав (MgO, AlO3, ZrO2), пористость и реакционная способность материала тигля являются важными факторами.

      Оксиды, содержащиеся в материале футеровки, могут взаимодействовать со многими элементами, и впоследствии образовавшийся кислород легко взаимодействует с более устойчивыми оксидами, присутствующими в расплаве. Например:

      2Al (расплав) + 3MgO (тигель) → Al2О3 (расплав) + 3Mg (расплав).

      Это – типичная ситуация, т. к. большинство промышленных плавок производится в тиглях с магнезитовой набивкой и большинство жаропрочных сплавов содержит алюминий. Оксиды, образующиеся в MgO – тигле, как полагают, более легко агломерируются и удаляются из расплава, если они образуются. Недостатки корундовых и цирконовых тиглей заключаются в разбросе показателей термомеханических свойств и высокой стоимости.

      Магний и редкоземельные элементы типа церия или миш-металла также используются для удаления

Скачать книгу