Surface Displacement Measurement from Remote Sensing Images. Olivier Cavalie

Чтение книги онлайн.

Читать онлайн книгу Surface Displacement Measurement from Remote Sensing Images - Olivier Cavalie страница 27

Surface Displacement Measurement from Remote Sensing Images - Olivier Cavalie

Скачать книгу

UK 15 500 - 100 WorldView Legion 1–6 USA 6 - - - WorldView Scout 1–6 USA–Saudi Arabia 6 - - -
Satellite Year of launch Highest spatial resolution (m) No. of XS bands Swath width for highest resolution (km)
Co3D 2023 0.5 4 7 x 5
Enmap 2021 30 8 + 154 30
PléiadesNeo 2021 0.3 4 14
ResourceSat-3/3A 2021 10 4 280
EarthDaily 2022 5 9 360
Vivid-i constellation (Earth-i) - 0.6–1 3 5.2 x 5.2
WorldView Legion 1–6 2021 0.30 - -
WorldView Scout 1–6 2021 0.8 - -

      For the optical imaging missions, nowadays, many Earth observation images are available across many spectral bands and many spatial resolutions. Thanks to the Sentinel and Landsat programs, a large number of images are freely available, allowing many new applications for scientists and commercial companies. Temporal resolution becomes as important as spatial resolution. Many satellite optical missions are commercial ones, with high competition in terms of the prices of provided images, the freshness of the data and the value-added services. With some applications, the satellite image as a product becomes less important. New space actors directly provide geo-statistics services based on the aggregated satellite data. The latest generations of satellites with very high resolutions (30 cm) open the door to more precise measurements of ground displacements.

      We thank Roger Fjørtoft and Jean-Marie Nicolas for their careful reviews and comments that helped to improve this chapter.

      Arcioni, M., Bensi, P., Fois, F., Gabriele, A., Hélière, F., Lin, C., Massotti, L., Scipal, K. (2013). ESA’s Biomass mission system and payload overview. Proceedings of the ESA Living Planet Symposium, Edinburgh, UK.

      CSA (2019). Open data: Over 36,000 historical RADARSAT-1 satellite images of the earth now available to the public. Canadian Space Agency, April 1, Saint-Hubert, Quebec [Online]. Available at: https://www.canada.ca/en/space-agency/news/2019/03/open-data-over-36000-historical-radarsat-1-satellite-images-of-the-earth-nowavailable-to-the-public.html.

      ESA (2019). (A)SAR on-the-fly: Data dissemination and processing service user manual. ASAR-OTF-UM, version 2.1 [Online]. Available at: https://earth.esa.int/eogateway/documents/20142/37627/ASAR-OTF-user-manual.pdf.

      Hélière, F., Carbone, A., Fonseca, N., Ayllon, N., Barnes, A., Fehringer, M. (2016). Biomass P-band SAR. EUSAR Proceedings, Hamburg, Germany.

      ITU-R (2009). Frequency bands and required bandwidths used for spaceborne active sensors operating in the earth exploration-satellite (active) and space research (active) services. ITU-R recommendation RS.577-7 [Online]. Available at: https://www.itu.int/rec/R-REC-RS.577-7-200902-I/en.

      ITU-R (2010). The essential role and global importance of radio spectrum use for Earth observations and for related applications [Online]. Available at: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-RS.2178-2010-PDF-E.pdf.

      ITU-R (2020). Eco frequency information system table ITU-region1 [Online]. Available at: https://efis.cept.org/view/search-general.do/.

      NASA (2019). NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. NASA Jet Propulsion Laboratory, CL# 18-1893, California, USA.

      Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S., Haarpaintner, J., Hajduch, G., Laurin, G., Lavalle, M., López-Martínez, C., Nagler, T., Su, B. (2019). The Copernicus L-band SAR mission ROSE-L (Radar Observing System for Europe). Proceedings of the SPIE Remote Sensing 2019, Strasbourg, France.

      Prats-Iraola, P., Scheiber, R., Marotti, L., Wollstadt, S., Reigber, A. (2012). Tops interferometry with TerraSAR-X. IEEE TGRS, 50(8).

      Solaas,

Скачать книгу