Reliability Analysis, Safety Assessment and Optimization. Enrico Zio

Чтение книги онлайн.

Читать онлайн книгу Reliability Analysis, Safety Assessment and Optimization - Enrico Zio страница 14

Reliability Analysis, Safety Assessment and Optimization - Enrico Zio

Скачать книгу

in Figure 1.10.

      Figure 1.10 Reliability block diagram of a series-parallel system.

      Denote pij as the reliability of component j in subsystem i, 1≤i≤m, 1≤j≤ni. Let Pi be the reliability of the subsystem i, 1≤i≤m. First, the reliability of each subsystem is derived as for the parallel system, that is,

      upper P Subscript i Baseline equals 1 minus product Underscript j equals 1 Overscript n Subscript i Baseline Endscripts left-parenthesis 1 minus p Subscript i j Baseline right-parenthesis comma i equals 1 comma 2 comma ellipsis comma m period(1.51)

      The reliability of the series-parallel system is, then,

      upper R Subscript s Baseline equals product Underscript i equals 1 Overscript m Endscripts upper P Subscript i Baseline equals product Underscript i equals 1 Overscript m Endscripts left-parenthesis 1 minus product Underscript j equals 1 Overscript n Subscript i Baseline Endscripts left-parenthesis 1 minus p Subscript i j Baseline right-parenthesis right-parenthesis period(1.52)

      1.3.4 K-out-of-n System

      For a system composed of n components, the system is operational if and only if at least k of the n components are operational. We call this type of system as k-out-of-n: G system, where G is short for Good. For a system composed of n components, the system fails if and only if at least k of the n components are failed. We call this type of system a k-out-of-n: F system. According to the definition, the series system is a 1-out-of-n: F system, where F is short for Failed. The parallel system is a 1-out-of-n: G system. We will mainly present the reliability of the k-out-of-n: G system here.

      Assume that the n components are identical and independent. Denote R as the reliability of each component, F as the unreliability of each component, q=1−p. Let Pi be the probability so that exactly i components are functional. In a k-out-of-n: G system, the number of functional components follows the binomial distribution with parameter n and R. The probability that exactly i components are functional, Pi, is

      The reliability of the system is the probability that the number of functional components is greater than or equal to k. Thus, the system reliability, Rs, is calculated by

      upper R Subscript s Baseline equals sigma-summation Underscript i equals k Overscript n Endscripts upper P Subscript i Baseline equals sigma-summation Underscript i equals k Overscript n Endscripts StartBinomialOrMatrix n Choose i EndBinomialOrMatrix p Superscript i Baseline q Superscript n minus i Baseline period(1.54)

      If the components are not identical, the system reliability should be calculated by enumerating all combinations of working components.

      1.3.5 Network System

      There are systems that can be represented by network diagrams, for example, gas networks, telecommunications networks, and power networks. A network system consists of a set of nodes and links. All the nodes and links have a probability of failure.

      1.4 System Reliability Assessment Methods

      There are many reliability assessment approaches developed to compute the reliability of complex systems, e.g. networks. Path-set and cut-set methods, decomposition and factorization methods, and binary decision diagram (BDD) are four commonly used methods, and we will introduce them in this section.

      1.4.1 Path-set and Cut-set Method

      A path set P is a set of components, which by functioning ensures that the system is functioning. A path set is said to be minimal if it cannot be reduced without losing its status as a path set. A cut set K is a set of components, which by failing causes the system to fail. A cut set is said to be minimal if it cannot be reduced without losing its status as a cut set. We refer to these minimal sets as minimal path and cut sets or vectors (MPSs, MPVs and MCSs, MCVs).

      Consider the minimal path sets of the system, P1, P2,…, Pp, and the minimal cut sets of the system, K1, K2,…, Kk. The reliability of the system is given by the union of all minimal path sets. The unreliability is given by the probability that at least one minimal cut set occurs.

       Example 1.4

      1 Find the minimal path sets and the minimal cut sets of the system.

      2 Calculate the reliability of the system if the reliability of each component is p.

      Figure 1.11 Bridge system.

       Solution

      1 The minimal path sets areThe minimal cut sets are

      2 The reliability of the system is calculated by the union of the path sets:

      1.4.2 Decomposition and Factorization

      The decomposition method begins by selecting a critical component, denoted by x, which is an important component of the complex system structure. The reliability of the system can be calculated by the conditional probability:

      upper R Subscript s Baseline equals upper P left-parenthesis system functionalMath bar pipe bar symblom x right-parenthesis upper P left-parenthesis x right-parenthesis plus upper P left-parenthesis system functional Math bar pipe bar symblom x overbar right-parenthesis left-parenthesis 1 minus upper P left-parenthesis x right-parenthesis right-parenthesis period(1.55)

      The factorization method is developed based on the decomposition method, which is used in a network system. Denote e as a critical edge in the network G. The reliability of the network is

      upper R Subscript s Baseline equals upper P left-parenthesis upper G functionalMath bar pipe bar symblom e right-parenthesis p Subscript e Baseline plus upper P left-parenthesis upper G functional Math bar pipe bar symblom e overbar right-parenthesis left-parenthesis 1 minus p Subscript e Baseline right-parenthesis period(1.56)

      1.4.3 Binary Decision Diagram

Скачать книгу