Continental Rifted Margins 1. Gwenn Peron-Pinvidic

Чтение книги онлайн.

Читать онлайн книгу Continental Rifted Margins 1 - Gwenn Peron-Pinvidic страница 10

Continental Rifted Margins 1 - Gwenn Peron-Pinvidic

Скачать книгу

align="center">

      Rifts were identified as unique geological occurrences before plate tectonics were established (e.g. Suess 1891; Gregory 1896; de Lapparent 1898; Willis 1928; Bullard 1936). Initially, they were described as topographic depressions flanked by arrays of subvertical faults (e.g. Gregory 1923). It was not until the last century that rifts were recognized as extensional features rather than as results of compressional deformation (e.g. Vening Meinesz 1950).

      This chapter provides a brief summary of these features, a list of the main types of rifts and case examples. Our aim is to clarify the basic notions required to study rifted margins – this is done to avoid any misunderstanding of the use of some terms in the following chapters. Regularly, a Further reading section will be provided as an illustration of the many contributions published on the various topics. The reader interested in finding more in-depth explanations is referred to these contributions for further detailed information.

      This section begins with the definition of the active and passive rifting categories, as these are regularly mentioned in the literature and are the primary designations of extensional rift settings. However, because these two categories are very loosely defined and present-day data coverage is limited, it is difficult to fit all rifts in this classification scheme. For this reason, we prefer a classification that is based on the general tectonic setting of the rifts, as proposed by Ruppel (1995), which will be described in section 2.2.

      Active rifting processes are governed by the upwelling of warm asthenospheric mantle beneath the base of the continental lithosphere, causing uplift and thinning of the continental plate by heating, basal shear and melting (Burke and Dewey 1973; Turcotte and Emerman 1983; Buck 1991). The idea is that in the earliest stages of this process, the lithospheric mantle is thinned by thermal erosion, while the continental crust is uplifted and affected by volcanic products, but preserves its initial thickness. The crust is thinned by extension in secondary stages (Merle 2011). This model was developed to explain various observations in rifts such as uplifted plateaus and abundant volcanism (e.g. flood basalts). Depending on the setting, the cause of asthenospheric rise is often related to a mantle plume, although the observations and constraints remain debated. For instance, the Rio Grande Rift (US–Mexico) is often listed as a type example of an active rift, with a narrow geometrical structural setting that is formed by laterally distributed pure shear extension (Wilson et al. 2005), with no observations suggesting the presence of a plume.

      On the other end of the spectrum, passive rifting is driven by distant stresses that cause crustal and lithospheric mantle extension and thinning, resulting in a passive asthenospheric mantle rise (Turcotte Oxburgh 1973; Keen 1985; Ruppel 1995). The driving forces are generated by plate boundary motions (e.g. subduction pull and ridge push) or by convective motions at the base of the lithosphere. The main contrast between passive and active rifting is that in passive rifting, the rise of the asthenosphere occurs only in response to the thinning of the overlying lithosphere – as opposed to active upwelling, driving the extension for active rifting. This passive upwelling can then generate various secondary processes affecting the rift-like decompression melting and consequent mantle-derived magmas which are added to the crust (as underplating, intrusions and extrusions) and specific lateral thermal gradients (Ruppel 1995; Huismans et al. 2001).

Скачать книгу