Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.
Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 50
Figure 3.2 Dependence of ratio of effective and matrix thermal conductivities for a two-phase composite on particulate volume fraction for a face-centred cubic array of spherical particles, at various phase contrasts.
Figure 3.4 Dependence of the effective thermal expansion coefficient for a two-phase composite on particulate volume fraction (see Table 3.2 for numerical values).
Table 3.1 Estimates of effective bulk modulus (GPa) for a two-phase particulate composite.
Vp | Maxwell’s Methodology | Arridge [11] (f.c.c.) | Arridge [11] (b.c.c.) | Torquato [13] Lower bound |
---|---|---|---|---|
0 | 80.56 | 80.56 | 80.56 | 80.56 |
0.1 | 88.06 | 88.01 | 88.09 | 88.09 |
0.2 | 96.61 | 96.47 | 96.67 | 96.71 |
0.3 | 106.42 | 106.28 | 106.56 | 106.66 |
0.4 | 117.80 | 117.76 | 118.12 | 118.23 |
0.5 | 131.16 | 131.56 | 131.90 | 131.83 |
0.6 | 147.07 | 148.79 | 148.76 | — |
0.6802 (max.) | 162.20 | — | 165.39 | — |
0.7 | 166.33 | 171.67 | — | — |
0.7405 (max.) | 175.33 | 183.54 | — | — |
0.8 | 190.12 | — | — | — |
0.9 | 220.26 | — | — | — |
Table 3.2 Estimates of thermal expansion coefficient (×106 K –1) of a two-phase particulate composite.
Vp | Maxwell’s Methodology | Arridge [11] (f.c.c.) | Arridge [11] (b.c.c.) | Torquato [13] Upper bound |
---|---|---|---|---|
0 | 22.5 | 22.5 | 22.5 | 22.5 |
0.1 | 20.13 | 20.1 | 20.1 | 20.12 |
0.2 | 17.87 | 17.9 | 17.9 | 17.85 |
0.3 | 15.73 | 15.8 | 15.7 | 15.69 |
0.4 | 13.70 | 13.7 | 13.7 | 13.63 |
0.5 | 11.76 | 11.7 | 11.7 | 11.67 |
0.6 | 9.91 | 9.7 | 9.7 | — |
0.6802 (max.) | 8.49 | — | 8.1 | — |
0.7 | 8.15 | 7.7 | — | — |
0.7405 (max.) | 7.45 | 6.9 | — | — |
0.8 | 6.46 | — | — | — |
0.9 | 4.85 | — | — | — |
It is worth noting from Bonnecaze and Brady [12, Tables 2–4], who used a multipole method to estimate the conductivity of cubic arrays of spherical particles, that their results for the case that retains only