Properties for Design of Composite Structures. Neil McCartney

Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 68

Properties for Design of Composite Structures - Neil McCartney

Скачать книгу

cluster of all types of fibre is now considered to be enclosed in a cylinder of radius b such that the volume fraction of fibres of type i within the cylinder of radius b is given by Vfi=niai2/b2. The volume fractions must satisfy the relation

      upper V Subscript m Baseline plus sigma-summation Underscript i equals 1 Overscript upper N Endscripts upper V Subscript f Superscript i Baseline equals 1 period(4.142)

      It then follows that (4.140) may be written in the form

      The coefficients of the 1/r terms in relations (4.141) and (4.143) must be identical so that

      sigma-summation Underscript i equals 1 Overscript upper N Endscripts upper V Subscript f Superscript i Baseline StartStartFraction StartFraction 1 Over mu Subscript t Superscript f left-parenthesis i right-parenthesis Baseline EndFraction minus StartFraction 1 Over mu Subscript m Baseline EndFraction OverOver StartFraction 1 Over mu Subscript t Superscript f left-parenthesis i right-parenthesis Baseline EndFraction plus StartFraction 1 Over mu Subscript m Baseline EndFraction plus StartFraction 2 Over k Subscript upper T Superscript m Baseline EndFraction EndEndFraction equals StartStartFraction StartFraction 1 Over mu Subscript t Superscript eff Baseline EndFraction minus StartFraction 1 Over mu Subscript m Baseline EndFraction OverOver StartFraction 1 Over mu Subscript t Superscript eff Baseline EndFraction plus StartFraction 1 Over mu Subscript m Baseline EndFraction plus StartFraction 2 Over k Subscript upper T Superscript m Baseline EndFraction EndEndFraction period(4.144)

      It then follows that the effective transverse shear modulus for the multiphase composite is given by

      where

      mu Subscript m Superscript asterisk Baseline equals StartFraction k Subscript upper T Superscript m Baseline mu Subscript m Baseline Over k Subscript upper T Superscript m Baseline plus 2 mu Subscript m Baseline EndFraction period(4.146)

      On using (4.1), the result (4.145) may also be written in the form

      4.6 Other Effective Elastic Properties for Multiphase Fibre-reinforced Composites

      Four independent effective elastic properties can now be estimated using relations (4.69), (4.67), (4.91) and (4.147), namely, νAeff,kTeff,μAeff,μteff. It is clear that Maxwell’s methodology has not provided an expression for the axial modulus EAeff of a multiphase unidirectionally fibre-reinforced composite. This problem has, however, been overcome [6] by considering a special case of aligned spheroidal inclusions (see Chapter 15 for details and (15.100)) where it has been shown that the effective axial Young’s modulus EAeff may be obtained from the following formula

      where

      k Subscript upper T Superscript m Baseline equals k Subscript m Baseline plus one-third mu Subscript m Baseline comma(4.149)

      and where values of νAeff and kTeff have already been determined. The transverse Young’s modulus ETeff and transverse Poisson’s ratio νteff can be estimated by making use of the following relations, corresponding to (4.18) and (4.47),

      upper E Subscript upper T Superscript 
						<noindex><p style= Скачать книгу