Все науки. №2, 2022. Международный научный журнал. Ибратжон Хатамович Алиев
Чтение книги онлайн.
Читать онлайн книгу Все науки. №2, 2022. Международный научный журнал - Ибратжон Хатамович Алиев страница 7
ПОДРОБНЫЙ АНАЛИЗ ПРОТОН-БОРОВОЙ РЕАКЦИИ С ВЫДЕЛЕНИЕМ ТРЁХ АЛЬФА-ЧАСТИЦ
Руми Ринад Фуадович
Старший научный сотрудник лаборатории ускорительной техники при институте полупроводников и микроэлектроники при Национальном Университете Узбекистана
Лаборатория ускорительной техники при институте полупроводников и микроэлектроники при Национальном Университете Узбекистана, Узбекистан
Аннотация. Рассмотрены теоретические основы ядерная реакция и получения энергии из её осуществления с высокой эффективностью при генерации из выделяемых при этом 3 альфа-частиц. При этом важно указание использование для реализации самой реакции резонансного ускорителя частиц типа ЛЦУ-ЭПД-20.
Ключевые слова: ускоритель, ядерная реакция, энергия, элементарные частицы.
Annotation. The theoretical foundations of a nuclear reaction and obtaining energy from its implementation with high efficiency when generating 3 alpha particles released at the same time are considered. At the same time, it is important to specify the use of a resonant particle accelerator of the LCU-EPD-20 type for the implementation of the reaction itself.
Keywords: accelerator, nuclear reaction, energy, elementary particles.
Первая ядерная реакция представляется следующим образом (2.1).
Протон с энергией в 2,312691131 МэВ и массой в 1,00728 а. е. м., налетает на бор-11 с атомной массой в 11,00930517 а. е. м., с выделением трёх альфа-частицы массы, которых составляют 4,001506179 а. е. м.
Изначально, необходимо определить, какое количество энергии затратит протон, приближаясь к ядру бора-11, а именно высоту кулоновского барьера (2.3), определив радиус ядра бора-11 в (2.2).
Следовательно, нынешняя энергия протона, после затраты на кулоновский барьер, составляет 0,23 эВ. Важно заметить, что сама кинетическая энергия частицы подобрана так, чтобы после её прохода энергия оставалась минимальной, что привело бы к увеличению вероятности взаимодействия в самой ядерной реакции. Теперь, необходимо вычислить энергетический выход данной ядерной реакции, с указанными массами в (2.4).
Поскольку эта реакция экзо-энергетическая, то нет смысла вычислять для неё порог реакции, остаётся лишь записать пару энергетических уравнений (2.5—2.6) и затем вычислить энергии, приобретаемые альфа-частицами.
Из этих энергетических уравнений стало ясно, что кроме выхода реакции, добавляется и оставшаяся кинетическая энергия, благодаря чему общая энергия, распределяемая между частицами, составляет 11,24006887 МэВ из равенства (2.7). Теперь, для распределения этих энергий достаточно воспользоваться (2.8), в этом случае, хоть и рассматривается выход уже 3 частиц, они имеют один тип, по этой причине, энергия для них распределяется равномерно, как и импульс.
И наконец, остаётся определить сечение ядерной реакции и число