Nanovaccinology as Targeted Therapeutics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanovaccinology as Targeted Therapeutics - Группа авторов страница 14

Nanovaccinology as Targeted Therapeutics - Группа авторов

Скачать книгу

responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J. Immunother. (Hagerstown, Md.: 1997), 30, 469–478, 2007.

      10. Hokmabad, V.R. et al., A comparison of the effects of silica and hydroxyapatite nanoparticles on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng. Regener. Med., 15, 735–750, 2018.

      11. Krishnamachari, Y., Geary, S.M., Lemke, C.D., Salem, A.K.J.P.r., Nanoparticle delivery systems in cancer vaccines. Pharm. Res., 28, 215–236, 2011.

      12. Joshi, V.B., Geary, S.M., Salem, A.K., Biodegradable particles as vaccine delivery systems: Size matters. AAPS J., 15, 85–94, 2013.

      13. Bishop, C.J., Kozielski, K.L., Green, J.J., Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J. Control. Release: Off. J. Controlled Release Soc., 219, 488–499, 2015.

      14. Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O.C., Mahmoudi, M., Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci., 5, 378–387, 2017.

      15. Corbo, C. et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (London, England), 11, 81–100, 2016.

      16. Fang, R.H., Kroll, A.V., Gao, W., Zhang, L., Cell membrane coating nanotechnology. Adv. Mater. (Deerfield Beach, Fla.), 30, e1706759, 2018.

      17. Gao, W. et al., Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. (Deerfield Beach, Fla.), 25, 3549–3553, 2013.

      18. Vijayan, V., Uthaman, S., Park, I.K., Cell Membrane-camouflaged nanoparticles: A promising biomimetic strategy for cancer theragnostics. Polymers, 10, 1–25, 2018.

      19. Zhao, L. et al., Nanoparticle vaccines. Vaccine, 32, 327–337, 2014.

      20. Laval, J.M., Mazeran, P.E., Thomas, D., Nanobiotechnology and its role in the development of new analytical devices. Analyst, 125, 29–33, 2000.

      21. Schneider, C.S. et al., Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv., 3, e1601556, 2017.

      22. Irvine, D.J., Hanson, M.C., Rakhra, K., Tokatlian, T., Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 115, 11109–11146, 2015.

      23. Szeto, G.L. and Lavik, E.B., Materials design at the interface of nanoparticles and innate immunity. J. Mater. Chem. B, 4, 1610–1618, 2016.

      24. Chattopadhyay, S., Chen, J.Y., Chen, H.W., Hu, C.J., Nanoparticle Vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 1, 244–260, 2017.

      25. Pachioni-Vasconcelos, J. de A., et al., Nanostructures for protein drug delivery. Biomater. Sci., 4, 205–218, 2016.

      27. Zhu, M., Wang, R., Nie, G., Applications of nanomaterials as vaccine adjuvants. Hum. Vaccin. Immunother., 10, 2761–2774, 2014.

      28. Ghiringhelli, F. et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med., 15, 1170–1178, 2009.

      29. He, Y., Hara, H., Núñez, G., Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 41, 1012–1021, 2016.

      30. Pati, R., Shevtsov, M., Sonawane, A., Nanoparticle vaccines Against infectious diseases. Front. Immunol., 9, 2224, 2018.

      31. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery, 4, 145–160, 2005.

      32. Mamo, T. and Poland, G.A., Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine, 30, 6609–6611, 2012.

      33. Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 31, 58–83, 2012.

      34. Plummer, E.M. and Manchester, M., Viral nanoparticles and virus-like particles: Platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3, 174–196, 2011.

      35. Roldão, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., Virus-like particles in vaccine development. Expert Rev. Vaccines, 9, 1149–1176, 2010.

      36. Chen, Y.-C., Cheng, H.-F., Yang, Y.-C., Yeh, M.-K., Nanotechnologies applied in biomedical vaccines. IntechOpen, J. Pharm. Pharmacol., 5, 85–107, 2017.

      37. Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 41, 2971–3010, 2012.

      38. Shae, D., Postma, A., Wilson, J.T., Vaccine delivery: where polymer chemistry meets immunology. Ther. Deliv., 7, 193–196, 2016.

      39. Acharya, S. and Sahoo, S.K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 63, 170–183, 2011.

      40. Mahapatro, A. and Singh, D.K., Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol., 9, 55, 2011.

      41. Danhier, F. et al., PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release: Official Journal of the Controlled Release Society, 161, 505–522, 2012.

      43. Getts, D.R., Shea, L.D., Miller, S.D., King, N.J., Harnessing nanoparticles for immune modulation. Trends Immunol., 36, 419–427, 2015.

      44. Santos, D.M. et al., PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. Nanomed.: Nanotechnol. Biol. Med., 9, 985–995, 2013.

      45. Sawaengsak, C., Mori, Y., Yamanishi, K., Mitrevej, A., Sinchaipanid, N., Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech, 15, 317–325, 2014.

      46. Dhakal, S. et al., Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in Pigs. Front. Immunol., 9, 934, 2018.

      47. Lynn, G.M. et al., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol., 33, 1201–1210, 2015.

      48. Carroll, E.C. et al., The vaccine Adjuvant chitosan promotes cellular immunity via DNA sensor

Скачать книгу