Trust-Based Communication Systems for Internet of Things Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Trust-Based Communication Systems for Internet of Things Applications - Группа авторов страница 22
19. Shinde, D.; Siddiqui, N. IOT Based Environment change Monitoring Controlling in Greenhouse using WSN. In Proceedings of the 2018 International Conference on Information, Communication, Engineering and Technology (ICICET 2018), Pune, India, 29–31 August 2018; pp. 1–5.
20. Pathak, A.; Uddin, M.A.; Jainal Abedin, M.; Andersson, K.; Mustafa, R.; Hossain, M.S. IoT based smart system to support agricultural parameters: A Case Study. Procedia Comput. Sci. 2019,155,648–653.
21. Hosseini, M.; McNairn, H.; Mitchell, S.; Davidson, A.; Robertson, L.D. Comparison of Machine Learning Algorithms and Water Cloud Model for Leaf Area Index Estimation Over Corn Fields. In Proceedings of the IGARSS 2019 - 2019 IEEE Int. Geosci. Remote Sens. Symp, Yokohama, Japan, 28 July–2 August 2019; pp. 6267–6270.
22. Fazai, R.; Mansouri, M.; Abodayeh, K.; Puig, V.; Selmi, M.; Nounou, H.; Nounou, M. Multiscale Gaussian Process Regression-Based GLRT for Water Quality Monitoring. Conf. Control Fault Toler. Syst. Sys. Tol. 2019, 44–49. [CrossRef].
23. Dimitriadis, S.; Goumopoulos, C. Applying machine learning to extract new knowledge in precision agriculture applications. In Proceedings of the 12th Pan-Hellenic Conference on Informatics Doryssa Seaside Resort (PCI 2008), Samos Island, Greece, 28–30 August 2008; pp. 100–104.
24. Y. Wang, W. Lin, T. Zhang, and Y. Ma, “Research on application and security protection of internet of things in smart grid,” pp. 1–5, Dec 2012.
25. A.-M. Rahmani, N. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg, and H. Tenhunen, “Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems,” in Consumer Communications and Networking Conference (CCNC), 2015 12th Annual IEEE, Jan 2015, pp. 826–834.
26. Jain, B.; Brar, G.; Malhotra, J.; Rani, S.; Ahmed, S.H. A cross layer protocol for traffic management in Social Internet of Vehicles. Future Gen. Comput. Syst. 2018, 82, 707–714. [CrossRef]
27. Ghosh, A.; Chatterjee, T.; Samanta, S.; Aich, J.; Roy, S. Distracted Driving: A Novel Approach towards Accident Prevention. Adv. Comput. Sci. Technol. 2017, 10, 2693–2705.
28. Sharifinejad, Maedeh, Ali Dorri, and Javad Rezazadeh. “BIS-A Blockchainbased Solution for the Insurance Industry in Smart Cities.” arXiv preprint arXiv:2001.05273 (2020).
29. C. Cecchinel, M. Jimenez, S. Mosser, M. Riveill, An architecture to support the collection of big data in the internet of things, in: 2014 IEEE World Congress on Services, IEEE, 2014, pp. 442–449.
30. A. Sheth, Internet of things to smart iot through semantic, cognitive, and perceptual computing, IEEE Intelligent Systems 31 (2) (2016) 108–112.
31. S. Bin, L. Yuan, W. Xiaoyi, Research on data mining models for the internet of things, in: 2010 International Conference on Image Analysis and Signal Processing, IEEE, 2010, pp. 127–132.
32. F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, X. Rong, Data mining for the internet of things: literature review and challenges, International Journal of Distributed Sensor Networks 2015 (2015) 12.
33. C.-W. Tsai, C.-F. Lai, M.-C. Chiang, L. T. Yang, Data mining for internet of things: a survey, IEEE Communications Surveys & Tutorials 16 (1) (2014) 77–97
34. Fadi, AL-Turjman, and Deebak Bakkiam David. “Seamless Authentication: For IoT-Big Data Technologies in Smart Industrial Application Systems.” IEEE Transactions on Industrial Informatics (2020).
35. Pääkkönen, Pekka, and Daniel Pakkala. “Extending reference architecture of big data systems towards machine learning in edge computing environments.” Journal of Big Data 7 (2020): 1-29.
36. Neelakandan, S & Paulraj, D 2020, ‘A gradient boosted decision tree-based sentiment classification of twitter data’, International Journal of Wavelets, Multiresolution and Information Processing, vol. 18, no. 4, pp. 205027 1-21. DOI: https://doi.org/10.1142/S0219691320500277
37. Neelakandan, S & Paulraj, D 2020, ‘An Automated Exploring And Learning Model For Data Prediction Using Balanced CA-Svm’, Journal of Ambient Intelligence and Humanized Computing, Vol.12, no.5, April 2020 , DOI: https://doi.org/10.1007/s12652-020-01937-9
38. Neelakandan, S, Annamalai, R., Rayen, S. J., & Arunajsmine, J. (2020). Social Media Networks Owing To Disruptions For Effective Learning. Procedia Computer Science, Vol.172, pp.145–151. doi:10.1016/j.procs.2020.05.022
39. S. Neelakandan and J. Gokul Anand, “Trust based optimal routing in MANET’s,” 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 2011, pp. 1150-1156, doi: 10.1109/ICETECT.2011.5760293.
40. Neelakandan, S “Large scale optimization to minimize network traffic using MapReduce in big data applications”. International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 193-199, April 2016. DOI : 10.1109/ICCPEIC.2016.7557196
41. Neelakandan, S & Paulraj, D 2020, ‘An Automated learning model of Conventional Neural Network based Sentiment Analysis on Twitter Data’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2230-2236, May 2020. DOI : https://doi.org/10.1166/jctn.2020.8876.
42. Madhan E.S ,Neelakandan, S, R.Annamalai 2020, ‘A Novel Approach for Vehicle Type Classification and Speed Prediction Using Deep Learning’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2237-2242, May 2020.DOI:10.1166/jctn.2020.8877
43. Akshat Agrawal, Rajesh Arora, Ranjana Arora, Prateek Agrawal, “Applications of Artificial Intelligence and Internet of Things for Detection and Future to Fight against COVID-19”, A book on Emerging Technologies for battling COVID-19- Applications and Innovations, Feb 2021, Springer.
44. Vishu Madaan, Aditya Roy, Charu Gupta, Prateek Agrawal, Anand Sharma, Christian Bologa, Radu Prodan, “XCOVNet: Chest X-ray Image Classification for COVID-19 Early Diagnosis using Convolution Neural Networks”, New Generation Computing, Springer, 2021.
45. Prateek Agrawal, Deepak Chaudhary, Vishu Madaan, Anatoliy Zabrovskiy, Radu Prodan, Dragi Kimovski, Christian Timmerer, “Automated Bank Cheque Verification Using Image Processing and Deep Learning Methods”, Multimedia tools and applications (MTAP), 80(1), pp. 1-32.
1 *Corresponding author: [email protected]
2 †Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив