Искусство мыслить рационально. Шорткаты в математике и в жизни. Маркус дю Сотой

Чтение книги онлайн.

Читать онлайн книгу Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой страница 12

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой

Скачать книгу

каждый житель города никак не может быть знаком со всеми остальными. Более консервативной гипотезой будет предположение о том, что горожане знакомы с жителями своего района. Но эта величина масштабируется линейно; общие размеры не имеют существенного значения.

      Судя по всему, связи между жителями городов находятся где-то между этими двумя предельными случаями. Горожанин поддерживает все свои местные связи плюс несколько более дальних связей в других частях города. По-видимому, именно такие дальние связи и приводят к тому, что при удвоении численности населения количество связей увеличивается на лишние 15 процентов. Как я объясню в последующих разделах этой книги, сети такого типа возникают во многих разных сценариях, и это обстоятельство оказывается чрезвычайно удобным для прокладки шорткатов.

      Паттерны обманчивые

      Хотя паттерны обладают невероятной силой, использовать их следует с осторожностью. Вы можете отправиться по такому пути, считая, что, вероятно, знаете, куда вы идете. Но иногда этот путь может завернуть в странном и неожиданном направлении. Возьмем ту последовательность, которую я предлагал вам решить раньше:

      1, 2, 4, 8, 16 …

      Что, если я скажу вам, что следующее число в этой последовательности – не 32, а 31?

      Если взять круг, отмечать на его окружности точки и соединять все эти точки прямыми линиями, каково будет максимальное число областей, на которые можно разделить этот круг? Если точка всего одна, никаких линий не будет и область получится тоже всего одна. Если добавить еще одну точку, две точки можно соединить линией, которая разделит круг на две области. Добавим третью точку. Проведя все возможные линии, соединяющие эти точки, получим треугольную фигуру, окруженную тремя секторами круга: всего четыре области.

      Рис. 1.1. Первые пять чисел деления круга

      Если продолжить действовать таким же образом, кажется, что проявляется паттерн. Вот данные по числу областей, получающихся при добавлении очередных точек на окружности:

      1, 2, 4, 8, 16 …

      В этот момент разумно предположить, что добавление очередной точки удваивает число областей. Проблема заключается в том, что этот паттерн нарушается, как только я добавляю шестую точку. Как ни старайся, число областей, на которые линии разбивают круг, оказывается равным 31. А вовсе не 32!

      Рис. 1.2. Шестое число деления круга

      Для числа областей существует формула, но она чуть сложнее, чем простое удвоение. Если на окружности есть N точек, максимальное число областей, которые можно получить, соединяя эти точки, равно

      1/24 (N4 – 6N3 + 23N2 – 18N + 24).

      Мораль тут следующая: важно знать, что именно описывают ваши данные, а не полагаться на одни лишь числа. Обработка данных может быть делом опасным, если она не сочетается с глубоким пониманием того, откуда взялись эти данные.

      Вот

Скачать книгу