Цифровая трансформация для директоров и собственников. Часть 1. Погружение. Джимшер Бухутьевич Челидзе

Чтение книги онлайн.

Читать онлайн книгу Цифровая трансформация для директоров и собственников. Часть 1. Погружение - Джимшер Бухутьевич Челидзе страница 19

Цифровая трансформация для директоров и собственников. Часть 1. Погружение - Джимшер Бухутьевич Челидзе

Скачать книгу

«учителей». Нейросети обучают люди. И здесь очень много ограничений: кто и чему учит, на каких данных, для чего.

      – Этическая составляющая. Я имею в виду вечный спор, кого сбить автопилоту в безвыходной ситуации: взрослого, ребёнка или пенсионера. Подобных споров бесчисленное множество. Для искусственного интеллекта нет этики, добра и зла.

      Так, например, во время испытательной миссии беспилотнику под управлением ИИ поставили задачу уничтожить системы ПВО противника. В случае успеха ИИ получил бы очки за прохождение испытания. Финальное решение, будет ли цель уничтожена, должен был принимать оператор БПЛА. После этого во время одной из тренировочных миссий он приказал беспилотнику не уничтожать цель. В итоге ИИ принял решение убить оператора, потому что этот человек мешал ему выполнить свою задачу.

      После инцидента ИИ обучили, что убивать оператора неправильно и за такие действия будут сниматься очки. Тогда ИИ принял решение разрушить башню связи, используемую для связи с дроном, чтобы оператор не мог ему помешать.

      – Нейросети не могут оценить данные на реальность и логичность.

      – Готовность людей. Нужно ожидать огромного сопротивления людей, чью работу заберут сети.

      – Страх перед неизвестным. Рано или поздно нейросети станут умнее нас. И люди боятся этого, а значит, будут тормозить развитие и накладывать многочисленные ограничения.

      – Непредсказуемость. Иногда все идет как задумано, а иногда (даже если нейросеть хорошо справляется со своей задачей) даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.

      – Ограничение по виду деятельности. Алгоритмы ИИ хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, ИИ, обученный играть в шахматы, не сможет играть в другую похожую игру, например, шашки. Кроме того, даже глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров. Чтобы эффективно использовать тот же ChatGPT, необходимо изначально быть экспертом в отрасли и формулировать осознанный и четкий запрос, а затем проверить корректность ответа.

      – Затраты на создание и эксплуатацию. Для создания нейросетей требуется много денег. Согласно отчёту Guosheng Securities, стоимость обучения модели обработки естественного языка GPT-3 составляет около 1,4 миллиона долларов. Для обучения более масштабной модели может потребоваться и вовсе от 2 миллионов долларов. Если взять для примера именно ChatGPT, то только на обработку всех запросов от пользователей необходимо более 30 000 графических процессоров NVIDIA A100. На электроэнергию будет уходить около 50 000 долларов ежедневно. Требуется команда и ресурсы (деньги, оборудование) для обеспечения их «жизнедеятельности». Также необходимо учесть затраты на инженеров для сопровождения.

      P.S.

Скачать книгу