Глоссариум по искусственному интеллекту: 2500 терминов. Александр Юрьевич Чесалов

Чтение книги онлайн.

Читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов - Александр Юрьевич Чесалов страница 20

Глоссариум по искусственному интеллекту: 2500 терминов - Александр Юрьевич Чесалов

Скачать книгу

обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных. Так как сети G и D имеют противоположные цели – создать образцы и отбраковать образцы – между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу из компании Google в 2014 году. Использование этой техники позволяет, в частности, генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото. Кроме того, GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий203.

      Генеративные модели (Generative model) – это семейство архитектур ИИ, целью которых является создание образцов данных с нуля. Они достигают этого, фиксируя распределение данных того типа вещей, которые мы хотим генерировать. На практике модель может создать (сгенерировать) новые примеры из обучающего набора данных. Например, генеративная модель может создавать стихи после обучения на наборе данных сборника Пушкина204.

      Генеративный ИИ (Generative AI) – это метод ИИ, который изучает представление артефактов из данных и использует его для создания совершенно новых, полностью оригинальных артефактов, сохраняющих сходство с исходными данными205.

      Генератор (Generator) – это подсистема в генеративно-состязательной сети, которая создает новые примеры206.

      Генерация естественного языка (Natural language generation, NLG) – это подмножество обработки естественного языка. В то время как понимание естественного языка сосредоточено на понимании компьютерного чтения, генерация естественного языка позволяет компьютерам писать. NLG – это процесс создания текстового ответа на человеческом языке на основе некоторых входных данных. Этот текст также можно преобразовать в речевой формат с помощью служб преобразования текста в речь. NLG также включает в себя возможности суммирования текста, которые генерируют сводки из входящих документов, сохраняя при этом целостность информации207.

      Генерация кандидатов (Candidate generation) – это первый этап рекомендации. По запросу система генерирует набор релевантных кандидатов208.

      Генерация речи (Speech generation) – это задача создания речи из какой-либо другой модальности, такой как текст, движения губ и т. д. Также под синтезом речи понимается компьютерное моделирование человеческой речи. Оно используется для преобразования письменной информации в слуховую там, где это более удобно, особенно для мобильных приложений, таких как голосовая электронная почта и единая система обмена сообщениями. Синтез речи также используется для помощи слабовидящим, так что, например, содержимое экрана дисплея может быть автоматически прочитано вслух слепому пользователю. Синтез речи является аналогом

Скачать книгу


<p>203</p>

Generative Adversarial Network (GAN) [Электронный ресурс] https://machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/generative-models-and-gans-fe7efc20020b/ (дата обращения: 11.02.2022)

<p>204</p>

Generative model [Электронный ресурс] https://habr.com URL: https://habr.com/ru/company/wunderfund/blog/334568/ (дата обращения: 31.01.2022)

<p>205</p>

Генеративный ИИ (Generative AI) [Электронный ресурс] https://expinet.ru URL: https://expinet.ru/novosti/chto-novogo-v-hype-cikle-gartnera-2022-g.html (дата обращения: 28.03.2023)

<p>206</p>

Generator [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#generator (дата обращения: 28.03.2023)

<p>207</p>

Генерация естественного языка (NLG) [Электронный ресурс] https://mcs.mail.ru URL: https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-processing-concepts/ (дата обращения: 07.07.2022)

<p>208</p>

Candidate generation [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/recommendation/overview/candidate-generation (дата обращения: 10.01.2022)