Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей. Алексей Семихатов

Чтение книги онлайн.

Читать онлайн книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов страница 14

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов

Скачать книгу

уравнение уже решено. Получить решение «в буквах» всегда здорово, потому что решение относится тогда не к одному-единственному уравнению с конкретными числами, а к семейству уравнений. Хрестоматийный пример – квадратное уравнение, в котором одна буква x обозначает неизвестное, а две или три другие буквы считаются известными. Такое уравнение можно действительно решить «в буквах», т. е. в общем виде, но это редкая ситуация – например, с уравнением пятой степени (содержащим x5 и более низкие степени) этого сделать нельзя, за исключением особых случаев, и приходится решать уравнение каждый раз заново с конкретными числами. Компьютер, как правило, неплохо справляется с уравнениями, в которых, кроме неизвестного, присутствуют только числа.

      Но неизвестными могут быть не только числа, но и более сложные объекты – функции. Пример функции – поведение (зависимость от времени) какой-либо величины, скажем объема вашего вклада в банке. Данные о том, что каждый день вклад увеличивается на 0,001 своей величины, являются, по существу, уравнением, из которого можно найти это поведение – функцию времени – и, например, узнать размер вклада через 1000 дней. Часто (хотя и не всегда) в задачах про такое поведение нет «зернистости» в виде фиксированного отрезка времени («дня»): считается, что функция изменяется непрерывно, и формулировка уравнений к этому приспособлена (такие уравнения называются дифференциальными, что примерно означает «имеют дело с очень малыми изменениями»). Пример поведения – координаты тела, движущегося в пространстве; чтобы задать его траекторию, требуются три функции времени – по одной для каждой из координат. Когда тела движутся под действием каких-либо сил, эти функции не произвольны, а определяются уравнениями движения.

      Рис. 1.7. Конические сечения

      Уравнения, которые выражают законы природы, описывают точную (количественную) связь между какими-то величинами. Такие уравнения позволяют делать предсказания о поведении и свойствах изучаемых систем. Когда предполагается наличие в природе какой-либо связи, сопоставление предсказаний с наблюдениями служит для отбора тех уравнений, которые приводят к более точным предсказаниям. Несколько упрощая, можно сказать, что таким образом и формулируются работающие законы природы.

      Конические сечения. Орбиты трех типов – эллипс (становящийся окружностью в частном случае), парабола и гипербола – объединены самим фактом того, что они и только они (кроме еще тривиального случая прямой линии) являются траекториями движения тел под действием притяжения одного центра. Они же объединены свойством совершенно иного типа: они и только они (и в специальном случае – прямая) возникают как пересечение плоскости и конуса. Конус – это поверхность, которая образуется, если свернуть в воронку лист бумаги, но с одним уточнением: математический конус продолжается по обе стороны от вершины, как видно уже на рис. 1.7a. Если теперь пересечь конус

Скачать книгу