Weather For Dummies. John D. Cox
Чтение книги онлайн.
Читать онлайн книгу Weather For Dummies - John D. Cox страница 23
![Weather For Dummies - John D. Cox Weather For Dummies - John D. Cox](/cover_pre1171049.jpg)
FIGURE 3-6: In the Northern Hemisphere’s summer, the Sun’s rays are more intense as they strike the atmosphere more directly overhead, while in winter they strike at a greater angle and travel through more atmosphere.
Spreading the beam
The closer together the rays of sunshine, the more intense the energy. This idea helps explain why the energy from the Sun is weaker when it shines on the polar regions of Earth than at the Equator. These regions remain cold even though the Arctic and Antarctica, at the North and South Poles, get many hours of daily sunshine during the summers in the Northern and Southern Hemispheres. It has to do with the angle at which the sunlight strikes.
Everybody notices this effect of the sunshine between the different seasons, of course. Unless they live in the Tropics, the region of the world along the Equator, where the Sun is more or less directly overhead all year long. For most of the world, the winter Sun that comes glancing in at a low angle is a pretty weak sister to the summer Sun that spends a lot of time directly overhead. Figure 3-7 illustrates the point. The next section of this chapter explains the cause of this seasonal angle.
A MATTER OF SOME GRAVITY
Hmmm … let me see now… .
The time from the Summer solstice to the Winter solstice would be — yup, that checks out, 182 and 183 days between them, close enough.
And from the spring equinox to the autumnal equinox — oops, what’s going on here? Between March 20 and September 22 are 186 days, and between September 22 and March 20 are 179 days.
Sure enough, it has to do with the elliptical shape of Earth’s orbit around the Sun (refer to Figure 3-6). This is gravity at work — the pull of the mass of the Sun on the Earth. When the Earth is closer to the Sun, the pull of gravity is stronger. Because it is farther from the Sun from March 20 to September 22, Earth travels more slowly during that loop of its orbit.
This means that summers are seven days longer in the Northern Hemisphere than in the Southern Hemisphere. Do they know this in Australia? Is this legal?
The sunlight’s angle affects its intensity in another way. The more directly the Sun is over your head, the less of Earth’s atmosphere it has to penetrate. Various things in the atmosphere filter out or scatter some of the incoming rays, so the more atmosphere it has to travel through, the more filtering and scattering takes place. (Chapter 15 says a lot about these optical effects.)
Tilting at the seasons
Earth is out of kilter. You might expect a well-behaved planet to stand up straight, and after 5 billion years or so, to act its age. But nope, not Earth. What can you do? Always it’s got this slant to it, like a slouchy teenager, as if it’s leaning against something. The angle of this tilt — the difference between where its poles are and where they would be if it were upright in relation to the Sun — is 23.5 degrees. When you come to think of it, this is quite a slant.
If Earth were upright in relation to the Sun, still there would be weather, because still there would be cold air near the poles and warm air near the Equator for the atmosphere to contend with. And still there would be the cool and warm variations of night and day. But without the tilt, there would be no seasons.
My people at the Go Figure Academy of Sciences tell me that in a truly upright world, life as you know it would be very different. For one thing, everywhere on Earth all year long would get the same amount of daylight and darkness — exactly 12 hours. For another, there would be no tourist seasons.
As Figure 3-7 shows, this arrangement that gives the Earth the same slant in relation to the Sun throughout the year produces some interesting dates.
On about March 20, the vernal (or spring) equinox, and again on or about September 22, the autumnal (or fall) equinox, it happens that daylight and darkness is distributed evenly around the world — each lasting 12 hours.
Direct sunlight reaches its most northerly point on or about June 21, the summer solstice, over the Tropic of Cancer, an imaginary latitude line 23.5 degrees north of the Equator. In the Northern Hemisphere, this is sometimes called “the longest day” because it is the day of most daylight.
Likewise, on or about December 21, the beam of direct sunlight has reached its most southerly point, over the Tropic of Capricorn, 23.5 degrees south of the Equator. In the Northern Hemisphere, this is “the shortest day,” the day of least daylight. By the same token, at the other end of Earth’s tilt, in the Southern Hemisphere, these “longest” and “shortest” days are reversed.
FIGURE 3-7: Here is a close-up view of Earth’s 23.5-degree slant and how it affects the distribution of sunlight in the course of its yearlong revolution around the Sun.
These dates are often said to be the “first official days” of the various seasons, but take another look. Is December 21 really the first day of winter where you live? As my people say at the Go Figure Academy of Sciences, this is the kind of thing that can happen when you send an astronomer to do a meteorologist’s job! In most parts of the United States, if you haven’t been wearing your winter coat before December 21, you haven’t been keeping your promises to your mother. Likewise, by June 21, the day of the year when the Sun’s rays beat down directly over more of the Northern Hemisphere than any other, summertime has already become a pretty familiar feeling.
In the middle latitudes of the Northern Hemisphere, weather scientists generally think of the winter season as the months of December, January, and February, spring as March, April, and May, and so on. (From winter through autumn, Part 3 goes into the details of the weather effects of these seasonal changes.)
Spin of the day
You and I are part and parcel of Earth’s motions in space, and the planet’s