Isotopic Constraints on Earth System Processes. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Isotopic Constraints on Earth System Processes - Группа авторов страница 13

Isotopic Constraints on Earth System Processes - Группа авторов

Скачать книгу

landmark paper with Don on zoned garnet Rb‐Sr chronology (Christensen et al., 1989), Ph.D. student Ethan Baxter became interested in refining garnet geochronology utilizing Don’s first love: the Sm‐Nd system. This led to his first paper with Don on the topic (Baxter et al., 2002) and to many subsequent years of work on Sm‐Nd garnet petrochronology since then (see Baxter et al., 2017, for an overview). Chapter Nine by Maneiro et al. represents a significant methodological advance that would have been considered impossible twenty years ago: the ability to date single grains of detrital garnet in the sedimentary record. These advances – including sub‐nanogram analysis of Nd by thermal ionization mass spectrometry (TIMS) – are an extension of Don’s pioneering contributions to Sm‐Nd analytical methods and applications.

      Chapter Ten provides an overview of efforts to use the stable isotope ratios of redox‐active elements to track critically important redox reactions in modern and ancient environments. This line of research arose from a very fortunate confluence of factors at Berkeley around 1995: The DePaolo group was developing groundwater‐related research directions and was beginning work on novel isotope measurements (i.e. 44Ca/40Ca and 11B/10B), some of which employed the double spike method. Researchers at Lawrence Berkeley National Laboratory were working intensely on the environmental geochemistry of Se, and Tom Bullen at USGS Menlo Park was interested in Se isotopes. These were all necessary ingredients for the development of Se isotope measurements and environmental applications. Once that path was established, work on the other elements followed naturally.

      In Chapter Thirteen, Messa et al. build upon much of the original stable Ca isotope research that Don was involved in when “Biological control of calcium isotopic abundances in the global calcium cycle” was published by Skulan et al. in 1997. This work, of which Don was second author on, was one of the original projects that illustrated stable Ca isotope fractionation within food chains, revealing that predators exhibit lighter stable Ca isotope ratios than their prey. This chapter expands upon this discovery, and a subsequent study by Skulan and DePaolo (1999), by detailing how stable Ca isotope ratios can reveal more than trophic level positioning, but also inter‐organism Ca isotope fractionation caused by diverse metabolic processes such as the generation of various hard tissues throughout an individual’s lifecycle.

      The editors and authors gratefully acknowledge the reviewers’ comments, which greatly improved the manuscripts herein. We also wish to express our gratitude for the hard work, thoughtful comments, and diligence of the editorial staff at AGU and Wiley.

       Kenneth W. W. Sims Department of Geology and Geophysics University of Wyoming, USA

       Kate Maher School of Earth, Energy and Environmental Sciences Stanford University, USA

       Daniel P. Schrag Department of Earth and Planetary Sciences Harvard University, USA

      1 Baxter, E.F., Caddick, M.J., & Dragovic, B. (2017). Garnet: A rock forming mineral petrochronometer. Reviews in Mineralogy & Geochemistry, 83, 469–533. https://doi.org/10.2138/rmg.2017.83.15

      2 Baxter, E.F., Ague, J.J., & DePaolo, D.J. (2002). Prograde temperature‐time evolution in the Barrovian type‐locality constrained by precise Sm/Nd garnet ages from Glen Clova, Scotland. Journal of the Geological Society, London, 159, 71–82. http://dx.doi.org/10.1144/0016‐76901013

      3 Christensen, J.N., Rosenfeld, J.L., & DePaolo, D.J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 244, 1465–1469. doi: 10.1126/science.244.4911.1465

      4 DePaolo, D.J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2), 189–202. https://doi.org/10.1016/0012‐821X(81)90153‐9

      5 DePaolo, D. J. (2006). Isotopic effects in fracture‐dominated reactive fluid–rock systems. Geochimica et Cosmochimica Acta, 70(5), 1077–1096. https://doi.org/10.1016/j.gca.2005.11.022

      6 Hammersley, L., & DePaolo, D. J. (2006). Isotopic and geophysical constraints on the structure and evolution of the Clear Lake volcanic system. Journal of Volcanological and Geothermal Research, 153, 331–356. https://doi.org/10.1016/j.jvolgeores.2005.12.003

      7 Jellinek, A. M., & DePaolo, D. J. (2003). A model for the origin of large silicic magma chambers: precursors of caldera‐forming eruptions. Bulletin of Volcanology, 65(5), 363–381. https://doi.org/10.1007/s00445‐003‐0277‐y

      8 Lassiter, J. C., & Hauri, E. H. (1998). Osmium‐isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth and Planetary Science Letters, 164(3–4), 483–496. https://doi.org/10.1016/S0012‐821X(98)00240‐4

      9 Richter, F. M., Davis, A. M., DePaolo, D. L., & Watson, E. B. (2003). Isotope fractionation between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67, 3905–3923. https://doi.org/10.1016/S0016‐7037(03)00174‐1

      10 Simon, J. I., & DePaolo, D. J. (2010). Stable calcium isotopic composition of meteorites and rocky planets. Earth and Planetary Science Letters, 289, 457–466. https://doi.org/10.1016/j.epsl.2009.11.035

      11 Sims, K. W. W., DePaolo, D. J., Murrrell, M. T., Baldridge, W. S., Goldstein, S. J., & Clague, D. (1995). Mechanisms of magma generation beneath Hawaii and Mid–Ocean ridges: U–Th and Sm–Nd isotopic evidence. Science, 267, 508–512. https://doi.org/10.1126/science.267.5197.508

      12 Sims, K. W. W., Murrell, M. T., DePaolo, D. J., Baldridge, W. S., Goldstein, S. J., Clague, D., & Jull, M. (1999). Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U–230Th–226Ra and 235U‐231Pa disequilibria. Geochimimica et Cosmochimica Acta, 63, 23, 4119–4138. doi: 10.1016/S0016‐7037(99)00313‐0

      13 Skulan,

Скачать книгу