Isotopic Constraints on Earth System Processes. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Isotopic Constraints on Earth System Processes - Группа авторов страница 38
12 Dauphas, N., Teng, F.‐Z., & Arndt, N. T. (2010). Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochimica et Cosmochimica Acta, 74(11), 3274–3291. https://doi.org/10.1016/j.gca.2010.02.031
13 Dingwell, D. B. (1990). Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chemical Geology, 82, 209–216. https://doi.org/10.1016/0009‐2541(90)90082‐I
14 Gallagher, K., & Elliott, T. (2009). Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth and Planetary Science Letters, 278(3–4), 286–296. https://doi.org/10.1016/j.epsl.2008.12.009
15 Gao, Y., Snow, J. E., Casey, J. F., & Yu, J. (2011). Cooling‐induced fractionation of mantle Li isotopes from the ultraslow‐spreading Gakkel Ridge. Earth and Planetary Science Letters, 301(1–2), 231–240. https://doi.org/10.1016/j.epsl.2010.11.003
16 Goel, G., Zhang, L., Lacks, D. J., & Van Orman, J. A. (2012). Isotope fractionation by diffusion in silicate melts: Insights from molecular dynamics simulations. Geochimica et Cosmochimica Acta, 93, 205–213. https://doi.org/10.1016/j.gca.2012.07.008
17 Guo, C., & Zhang, Y. (2016). Multicomponent diffusion in silicate melts: SiO2–TiO2–Al2O3–MgO–CaO–Na2O–K2O system. Geochimica et Cosmochimica Acta, 195, 126–141. https://doi.org/10.1016/j.gca.2016.09.003
18 Guo, C., & Zhang, Y. (2018). Multicomponent diffusion in basaltic melts at 1350°C. Geochimica et Cosmochimica Acta, 228, 190–204. https://doi.org/10.1016/j.gca.2018.02.043
19 Holycross, M., Watson, E., Richter, F., & Villeneuve, J. (2018). Diffusive fractionation of Li isotopes in wet, highly silicic melts. Geochemical Perspectives Letters, 6, 39–42. doi: 10.7185/geochemlet.1807
20 Jeffcoate, A., Elliott, T., Kasemann, S., Ionov, D., Cooper, K., & Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1), 202–218. https://doi.org/10.1016/j.gca.2006.06.1611
21 Kil, Y., Jung, H., & Yang, K. (2016). Li isotopic disequilibrium of the Cenozoic subcontinental lithospheric mantle in East Asia. Geosciences Journal, 20(5), 597–607. https://doi.org/10.1007/s12303‐016‐0024‐y
22 Kress, V., & Ghiorso, M. (1993). Multicomponent diffusion in MgO‐Al2O3‐SiO2 and CaO‐MgO‐Al2O3‐SiO2 melts. Geochimica et Cosmochimica Acta, 57(18), 4453–4466. https://doi.org/10.1016/0016‐7037(93)90495‐I
23 Kress, V. C., & Ghiorso, M. S. (1995). Multicomponent diffusion in basaltic melts. Geochimica et Cosmochimica Acta, 59(2), 313–324. https://doi.org/10.1016/0016‐7037(94)00286‐U
24 Liang, Y. (2010). Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. Reviews in Mineralogy and Geochemistry, 72(1), 409–446. https://doi.org/10.2138/rmg.2010.72.9
25 Liang, Y., & Davis, A. M. (2002). Energetics of multicomponent diffusion in molten CaO‐Al2O3‐SiO2. Geochimica et Cosmochimica Acta, 66(4), 635–646. https://doi.org/10.1016/S0016‐7037(01)00793‐1
26 Liang, Y., Richter, F. M., & Watson, E. B. (1996). Diffusion in silicate melts: II. Multicomponent diffusion in CaO‐Al2O3‐SiO2 at 1500 °C and 1 GPa. Geochimica et Cosmochimica Acta, 60(24), 5021–5035. https://doi.org/10.1016/S0016‐7037(96)00352‐3
27 Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., & Zimmerman, M. (2005). Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochimica et Cosmochimica Acta, 69(3), 735–751. https://doi.org/10.1016/j.gca.2004.08.004
28 Marschall, H. R., von Strandmann, P. A. P., Seitz, H.‐M., Elliott, T., & Niu, Y. (2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262(3–4), 563–580. doi: 10.1016/j.espl.2007.08.005
29 Morgan, L. E., Ramos, D. P. S., Davidheiser‐Kroll, B., Faithfull, J., Lloyd, N. S., Ellam, R. M., & Higgins, J. A. (2018). High‐precision 41K/39K measurements by MC‐ICP‐MS indicate terrestrial variability of δ41K. Journal of Analytical Atomic Spectrometry, 33(2), 175–186. https://doi.org/10.1039/C7JA00257B
30 Mueller, T., Watson, E. B., Trail, D., Wiedenbeck, M., Van Orman, J., & Hauri, E. H. (2014). Diffusive fractionation of carbon isotopes in γ‐Fe: Experiment, models and implications for early solar system processes. Geochimica et Cosmochimica Acta, 127, 57–66. https://doi.org/10.1016/j.gca.2013.11.014
31 Mungall, J. E., Romano, C., & Dingwell, D. B. (1998). Multicomponent diffusion in the molten system K2O‐Na2O‐Al2O3‐SiO2‐H2O. American Mineralogist, 83(7–8), 685–699. https://doi.org/10.2138/am‐1998‐7‐802
32 Oeser, M., Dohmen, R., Horn, I., Schuth, S., & Weyer, S. (2015). Processes and time scales of magmatic evolution as revealed by fe–mg chemical and isotopic zoning in natural olivines. Geochimica et Cosmochimica Acta, 154, 130–150. https://doi.org/10.1016/j.gca.2015.01.025
33 Oishi, Y., Nanba, M., & Pask, J. A. (1982). Analysis of liquid‐state interdiffusion in the system CaO‐Al2O3‐SiO2 using multiatomic ion models. Journal of the American Ceramic Society, 65(5), 247–253. doi: 10.1111/J.1151‐2916.1982.TB10427.X
34 Onsager, L. (1945). Theories and problems of liquid diffusion. Annals of the New York Academy of Sciences, 46(5), 241–265. https://doi.org/10.1111/j.1749‐6632.1945.tb36170.x
35 Parkinson, I. J., Hammond, S. J., James, R. H., & Rogers, N. W. (2007). High‐temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, 257(3–4), 609–621. doi: 10.1016/j.espl.2007.03.023
36 Richter, F. M. (1993). A method for determining activity‐composition relations using chemical diffusion in silicate melts. Geochimica et Cosmochimica Acta, 57(9), 2019–2032.