200 занимательных логических задач. Д. А. Гусев
Чтение книги онлайн.
Читать онлайн книгу 200 занимательных логических задач - Д. А. Гусев страница 7
118. Половина от половины числа равна половине. Какое это число?
119. Со временем человек обязательно побывает на Марсе. Саша Иванов – это человек. Следовательно, Саша Иванов со временем обязательно побывает на Марсе. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
120. Для получения оранжевой краски надо смешать 6 частей желтой краски с 2 частями красной. Есть 3 гр. желтой краски и 3 гр. красной. Сколько граммов оранжевой краски можно получить в этом случае?
121. На вопрос, сколько ему лет, Вадим отвечал, что через 13 лет ему будет в четыре раза больше лет, чем 2 года назад. Сколько ему лет?
122. Из 12 спичек составлено 4 квадрата. Каким образом надо убрать две спички, чтобы осталось 2 квадрата?
123. Какой знак надо поставить между числами 5 и 6, чтобы получившееся число было больше 5, но меньше 6?
5 < 5? 6 < 6
124. В футбольной команде 11 игроков. Их средний возраст равен 22 годам. Во время мачта один из игроков выбыл. При этом средний возраст команды стал равен 21 году. Сколько лет выбывшему игроку?
125. – Сколько лет твоему отцу? – спрашивают мальчика.
– Столько же, сколько и мне, – невозмутимо отвечает он.
– Как такое возможно?
– Очень просто: мой отец стал моим отцом только тогда, когда я родился, ведь до моего рождения он не был моим отцом, значит моему отцу столько же лет, сколько и мне.
Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
126. В мешке 24 кг гвоздей. Каким образом можно на чашечных весах без гирь отмерить 9 кг гвоздей?
127. Петр лгал с понедельника по среду и говорил правду в другие дни, а Иван лгал с четверга по субботу и говорил правду в другие дни. Однажды они одинаково сказали: «Вчера был один из дней, когда я лгу». Какой день был вчера?
128. Трехзначное число записали цифрами, а потом – словами. Получилось, что все цифры в этом числе разные и возрастают слева направо, а все слова начинаются с одной и той же буквы. Какое это число?
129. В равенстве, составленном из спичек, допущена ошибка. Каким образом надо переложить одну спичку, чтобы равенство стало верным?
130. Во сколько раз увеличится трехзначное число, если к нему приписать такое же число?
131. Если бы не было времени, то не было бы ни одного дня. Если бы не было ни одного дня, то всегда стояла бы ночь. Но если бы всегда стояла ночь, то было бы время. Следовательно, если бы не было времени, оно было бы. В чем заключается причина данного недоразумения?
132. В каждой из двух корзин 12 яблок. Настя взяла несколько яблок из первой корзины, а Маша взяла из второй столько, сколько осталось в первой. Сколько яблок осталось в двух корзинах вместе?
Конец ознакомительного фрагмента.
Текст предоставлен