Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт. Джордан Голдмейер

Чтение книги онлайн.

Читать онлайн книгу Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт - Джордан Голдмейер страница 10

Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт - Джордан Голдмейер Мировой компьютерный бестселлер

Скачать книгу

данных или технологии даст ей некое преимущество. Вы наверняка сталкивались с маркетинговыми уловками наподобие: «Если вы не используете искусственный интеллект (ИИ), то вы отстаете…» Или когда компания привязывается к какому-то понравившемуся ей модному термину (вроде «анализа настроений»).

      – Фокус на конечном результате. Некоторые проекты сбиваются с пути, потому что компании уделяют слишком много внимания тому, каким должен быть конечный результат. Например, они говорят о необходимости создания в рамках проекта интерактивной информационной панели. Вы приступаете к реализации проекта и оказываетесь перед выбором между созданием новой информационной панели и установкой системы бизнес-аналитики. Проектные группы должны быть готовы сделать шаг назад и понять, как именно то, что они собираются создать, принесет пользу организации.

      То, что оба предупреждающих знака касаются технологии, а также то, что ее не следует упоминать на этапе определения проблемы, может показаться неожиданностью или облегчением. На более позднем этапе реализации проекта методологиям и результатам, безусловно, придется уделить внимание. Однако в самом начале проблема должна быть изложена в ясных и понятных каждому терминах. Вот почему мы рекомендуем вам отказаться от технической терминологии и маркетинговой риторики. Начните с описания проблемы, которую требуется решить, а не технологии, которую планируется использовать.

      Почему это важно? Дело в том, что проектные команды обычно состоят из тех, кто обожает данные, и тех, кто их боится. Как только в ходе обсуждения проблемы разговор заходит о методах анализа или технологиях, могут произойти две вещи. Люди, которых пугают данные, перестают участвовать в определении бизнес-проблемы. А те, кто их обожает, быстро разбивают проблему на технические подзадачи, которые могут соответствовать или не соответствовать реальной бизнес-цели. После превращения бизнес-проблемы в набор подзадач, связанных с обработкой данных, на обнаружение допущенной ошибки могут уйти недели и даже месяцы, потому что после начала работы над проектом никто не захочет пересматривать формулировку основной проблемы.

      По сути, команды должны ответить на вопрос: «Действительно ли это реальная бизнес-проблема, которую необходимо решить, или мы занимаемся анализом данных ради него самого?» Это хороший и прямолинейный вопрос, который следует задавать именно сейчас, когда вокруг науки о данных и смежных областей такой ажиотаж и путаница.

      Кого затрагивает эта проблема?

      В данном случае важно понять не только то, кого затрагивает проблема, но и то, как может измениться работа соответствующих специалистов в будущем.

      Вы должны подумать обо всех уровнях организации (а также о ее клиентах, если таковые имеются). Мы не имеем в виду дата-сайентиста, работающего над проблемой, или команду инженеров, которым придется поддерживать программное обеспечение. Речь идет об установлении конечных пользователей. Зачастую это не только те люди, которые участвуют в определении проблемы. Поэтому очень важно понять, чья повседневная

Скачать книгу