Семиотические исследования. В. М. Розин

Чтение книги онлайн.

Читать онлайн книгу Семиотические исследования - В. М. Розин страница 20

Автор:
Жанр:
Серия:
Издательство:
Семиотические исследования - В. М. Розин Humanitas

Скачать книгу

стандартной), а также длину одной их гряд С'. В языке древних народов «гряда» – это не только название части поля, но и мера площади.

      (схема 9)

      Введение эталонной гряды, подсчет количества гряд и их длины тоже не разрешали всех затруднений, поскольку в древнем земледелии постоянно приходилось решать задачи на сравнение по величине двух и более полей. Предположим, имеются два поля, которые надо сравнить. В первом поле 25 гряд и каждая гряда имеет протяженность 30 шагов, а в другом – 50 гряд протяженностью в 20 шагов. Спрашивается, какое поле больше и на сколько? Сделать это, сравнивая числа, невозможно: у первого поля бо́льшая протяженность гряды, но, с другой стороны, меньше гряд. Однако поля можно сравнить по величине, если у них или одинаковое количество гряд или одинаковая протяженность (длина) гряды. Именно к этой ситуации старались прийти древние писцы и землемеры. Заметив, сравнивая урожаи полей, что величина поля не изменится, если длину гряды (количество гряд) увеличить в n раз, и соответственно количество гряд (длину гряды) уменьшить в n раз, они стали преобразовывать поля, но не реально, а в плоскости замещающих их знаков (чисел). Например, чтобы решить приведенную здесь задачу, нужно количество гряд в первом поле увеличить в два раза (25×2=50), а длину гряды, соответственно, уменьшить в два раза (30:2=15). Так как в Древнем мире обычно сравнивали большое количество полей разной величины (например, в Древнем Вавилоне сразу сравнивали несколько сотен полей), то постепенно сложилась практика приведения длины гряды к самой маленькой длине полей и, в конце концов, к единице длины (один шаг, локоть). Соответственно, чтобы не изменилась величина поля, количество гряд умножали на длину полей. Например, для полей, величина которых выражается числами – 10,40, 5,25, 15,20, 2,30, получалась следующая таблица:

      или после соответствующих арифметических операций:

      Поскольку слева всегда получается число 1, то величина поля выражается только числами и операциями в правом столбце, т. е. произведением длины гряды на количество гряд. Естественно предположить, что этот факт рано или поздно был осознан древними писцами, они стали опускать числа 1 левого столбца и построили принципиально новый способ вычислений: сначала измеряли количество гряд и длину средней гряды (у прямоугольного поля – это любая гряда, у трапециидального и треугольного – среднее арифметическое самой большой и самой маленькой длины), а затем вычисляли величину поля, перемножив полученные числа (14; 15; 44). Но если бы, например, шумерскому писцу, впервые нашедшему формулу вычисления площади прямого поля, сказали, что он что-то там сочинил или придумал, он бы все это отверг как кощунство и неверие в богов. Выводя данную формулу, он считал, что всего лишь описывает, как нечто было устроено богом, что сам бог в обмен на его усердие и богопочитание открывает ему знание этого устройства.

      Рассмотренный здесь этап как действия со знаками можно записать так:

      (схема

Скачать книгу