Форма реальности. Джордан Элленберг

Чтение книги онлайн.

Читать онлайн книгу Форма реальности - Джордан Элленберг страница 19

Форма реальности - Джордан Элленберг МИФ Научпоп

Скачать книгу

геометрии симметрии – это движения фигур как твердого тела: любые комбинации сдвигов (переносов), переворачиваний (отражений) и вращений. Язык симметрии позволяет говорить о конгруэнтности (равенстве) более современным способом. Вместо того чтобы сказать: два треугольника конгруэнтны, когда соответствующие стороны и углы равны, мы говорим: треугольники конгруэнтны, если существует движение, которое переводит один в другой. Разве это не более естественно? Действительно, читая Евклида, чувствуешь, что он еле сдерживается (не всегда успешно), чтобы не выразиться именно таким образом.

      Зачем в качестве фундаментальных симметрий брать движения? Одна из веских причин состоит в том (хотя доказать это не так-то легко), что именно движения – это то, что вы можете проделывать с плоскостью, сохраняя при этом расстояние между точками; собственно, и слово симметрия происходит от древнегреческого слова συμμετρία (соразмерность), которое образовано из слов συμ- (вместе, с, совместно) и μετρέω (измеряю). Термин, означающий «равная мера», был бы лучше; и действительно, в современной математике словом изометрия (от греческих слов ἴσος – равный, одинаковый, и μετρέω – измеряю) называют преобразования, которые сохраняют расстояние.

      Эти два треугольника конгруэнтны,

      а потому мы склонны, как и Евклид, считать, что они равны, несмотря на то что на самом деле это два разных треугольника, расположенных в нескольких сантиметрах друг от друга. Это подводит нас к другому изречению постоянно цитируемого Пуанкаре:

      Математика – это искусство давать одно название разным вещам.

      Подобные проблемы с определениями – часть нашего мышления и речи. Представьте, что кто-то спрашивает вас, не из Чикаго ли вы, а вы отвечаете: «Нет, я из Чикаго двадцатипятилетней давности». Это было бы абсурдной педантичностью, поскольку, говоря о городах, мы неявно подразумеваем симметрию при переносе во времени. В стиле Пуанкаре мы называем Чикаго прошлого и Чикаго настоящего одним и тем же словом.

      Конечно, мы могли бы строже Евклида отнестись к тому, что считать симметрией: например, запретить отражения и вращения, оставив только перенос на плоскости без поворотов. Тогда эти два нарисованных выше треугольника уже не были бы равны, поскольку указывают в разных направлениях.

      А если оставить вращения, но отказаться от отражений? Вы можете представить это как класс допустимых преобразований, но только в пределах плоскости: вы можете передвигать и поворачивать объекты, но запрещается их поднимать и переворачивать, поскольку это означает запрещенный выход в трехмерное пространство. Согласно таким правилам, мы по-прежнему не можем назвать эти два треугольника одним именем. В левом треугольнике порядок сторон от самой короткой к самой длинной идет против часовой стрелки. Как бы вы ни двигали и не поворачивали эту фигуру, это свойство сохранится, а значит, левый треугольник никогда не совпадет с правым,

Скачать книгу