Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт. Александр Поддьяков
Чтение книги онлайн.
Читать онлайн книгу Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт - Александр Поддьяков страница 11
При этом достижимость решения не может быть гарантирована на 100 % никакими методами – в отличие от ситуации с алгоритмически разрешимыми задачами. Здесь неизбежно начинают играть роль индивидуальные творческие возможности решающего. Инвариантный подход оставляет за бортом проблемы конструирования таких решений и проблему алгоритмической неразрешимости вообще.
Для наглядности мы использовали в этом описании решения сложных задач метафору «строительства из кирпичиков», но возможны и другие. Например, Д. Дернер использует компьютерную метафору: «можно сказать, что у нас в голове хранится множество фрагментов отдельных программ, которые в конкретной ситуации комбинируются для решения той или иной проблемы» [Дернер, 1997, с. 215]. Системное мышление – это умение настроить комплекс своих способностей на условия конкретной ситуации, которые всегда различны (там же, с. 236).
При этом было бы бессмысленным отрицать возможность и необходимость построения тех или иных относительно общих и достаточно эффективных методов в определенных областях. Эти методы уже оказали огромное влияние на развитие цивилизации. Общие алгоритмические методы лежат в основе современного автоматизированного промышленного производства и бурно развивающихся информационных компьютерных технологий. И, скорее всего, еще будут открыты такие гениальные методы обобщенного инвариантного типа и гениальные алгоритмы, которые приведут к новым технологическим переворотам. Однако необходимо задуматься о том, что в ряде важных отношений границы применимости инвариантных методов ощущаются уже сейчас.
Мы утверждаем, что фундаментальное значение имеет ранее упомянутая проблема распознавания, остановится или нет (не попадет ли в бесконечный цикл) произвольно выбранная программа, являющаяся предписанием алгоритмического типа. Алгоритмическая неразрешимость этой проблемы является примером того, что для работы со многими алгоритмами не существует алгоритмов (нет алгоритмов использования алгоритмов). Принципиальное следствие этой проблемы таково. Ни один алгоритм, ни один план действий не может быть проверен каким-либо общим, универсальным, инвариантным