.

Чтение книги онлайн.

Читать онлайн книгу - страница 4

Автор:
Жанр:
Серия:
Издательство:
 -

Скачать книгу

М3, а круг – Mn, тогда согласно условию М3 < M3 < Mn. Следовательно, Mn < M3

      Ответ: Дети могут из круга вырезать новые треугольники.

      Теорема 16. N–е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

      Тn = P, если R = P – Tn = 0

      Доказательство:

      Пусть T1 + T2 + … + Tn = P, то R = P – T1 – T2– … – Tn = 0. Для того чтобы N–е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R = P – T1 – T2 – … – Tn = T1 + T2 + … + Tn – T1 – T2– … – Tn = 0 и получим равенство прямоугольников Tn с квадратом.

      Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

      Решение: Т = 5, P – квадратное дно, R – ?

      Используя общую формулу R = P – Tn, получим R = P – 5. То есть размер пяти прямоугольников будет равен размеру квадрата.

      Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

      Теорема 17. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

      F = F, но F * Ri = P

      Доказательство:

      Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F * Ri = P, где Р – это уже не круг.

      Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?

      Решение: F круг, P – овал, R – ?

      Используя общую формулу F * Ri = P, получим Ri = P / F. Когда мальчик рисовал круг, его радиус был непостоянен.

      Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.

      Теорема 18. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.

      Х1 * f + Х2 * f + … + Хn * f = P

      Доказательство:

      Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1 * f + Х2 = P.

      Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.

      Решение: Х1 = 130, Х2 = –1 (недосчет), Х3 = –2 (раскололись), Р = ?

      Используя формулу Х1 * f + Х2 * f + … + Хn * f = P, получим 130 + (–1) * недосчет + (–2) * раскололись = 127. Известно, что для строительства стены требовалось 100 кирпичей. Значит 127 – 100 = 27. Стена будет построена, и 27 кирпичей останутся лишними.

      Ответ: У работника получилось построить стену.

      Теорема 19. Мы не можем доказать равенство фигур А = В по признакам i. Любой признак i может оказаться ошибочным.

      Аi

Скачать книгу