Думай как математик. Как решать любые задачи быстрее и эффективнее. Барбара Оакли

Чтение книги онлайн.

Читать онлайн книгу Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли страница 12

Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли

Скачать книгу

эти связанные с символами и формулами операции. Так они могут реорганизовать то, что уже заучили механически, в соответствии с мнемоническими принципами более высокого уровня, касающимися комбинаторных возможностей и их абстрактной соотнесенности с манипулированием объектами. Такой шаг к абстракции для многих детей зачастую сложен. Однако вспомните, что та же трансформация на еще более высоком уровне абстракции требуется для понимания высшей математики. Дифференциалы связаны с рекурсивным делением, интегралы – с рекурсивным умножением, в каждом случае до бесконечности, т. е. до предельных величин (это возможно потому, что они зависят от сходящихся рядов, которые сами по себе плод умозаключений, а не прямого наблюдения). Эта способность видеть, что будет, если операцию повторять бесчисленное количество раз, и является ключевой для того, чтобы разрешить парадокс Зенона (который, кажется, невозможно осмыслить, когда он описан словами). Однако вдобавок к этой сложности используемый сейчас нами лейбницевский формализм сводит эту бесконечную рекурсию к одному символу (dx/dt) или знаку интеграла, поскольку никто не в состоянии писать такие операции бесконечно. Из-за этого манипулирование математическими символами еще больше теряет связь с соответствующими физическими величинами.

      Поэтому смысл операции, выраженный математически, по сути содержит двойную кодировку. Да, у нас развиты мыслительные способности, позволяющие манипулировать с физическими объектами, и, разумеется, это сложно. Однако математика есть форма «кодирования», а не только воспроизведения, и декодирование является чрезвычайно трудным процессом именно из-за комбинаторных сложностей. Вот почему кодирование и шифрование осложняют восстановление и получение изначальной информации. По моему мнению, это является неотъемлемым свойством математики, независимо от развитых у нас способностей. Математика сложна по той же причине, по которой сложна расшифровка закодированного послания.

      К моему удивлению, мы все знаем, что математические уравнения – это по сути зашифрованные послания, для расшифровки которых нужен ключ. Однако мы почему-то изумляемся, что высшая математика так сложна для преподавания, и часто виним систему образования или преподавателей. Мне кажется, что с тем же успехом можно обвинять всю эволюцию» (личная переписка с автором, 11 июля 2013 г.).

      11

      Bilalič et al. 2008.

      12

      Geary 2011. См. также документальный фильм «Частная вселенная» (A Private Universe) по адресу http://www.learner.org/resources/series28.html?pop=yes&pid=9, который обусловил дальнейшее изучение природы ошибочного понимания естественно-научных концепций.

      13

      Алан Шёнфилд (Alan Schoenfeld 1992) замечает, что более сотни имеющихся в его распоряжении видеороликов, на которых старшеклассники и студенты решают незнакомые задачи, свидетельствуют: примерно в 60 % случаев ре�

Скачать книгу