Рожденный жизнью. Уран: от атома до месторождения. Владимир Печенкин

Чтение книги онлайн.

Читать онлайн книгу Рожденный жизнью. Уран: от атома до месторождения - Владимир Печенкин страница 16

Рожденный жизнью. Уран: от атома до месторождения - Владимир Печенкин

Скачать книгу

КПД. Это «изобретение» стало важнейшим поворотным пунктом: в ходе оксигенного фотосинтеза донором электрона является уже не горная порода, а поистине неисчерпаемый земной ресурс – обычная вода, а побочным продуктом – кислород. Кислородный фотосинтез сделал бактерии независимыми от соединений серы и железа и открыл перед ними небывалые возможности. Но за все надо платить – кислород оказался настоящим ядом для существовавших на тот момент форм жизни. Спокойному существованию анаэробных организмов микроорганизмов на планете пришел конец: началась борьба за выживание. И все-таки, несмотря на появление цианобактерий, господство прокариот на Земле продолжалось еще почти два миллиарда лет.

      Возникшие в архее бактериальные маты по уровню целостности вплотную приблизились к настоящему организму, но все-таки не достигли этого уровня. Прокариоты так и не смогли дать начало многоклеточным организмам, для этого они были слишком эгоистичны: каждый отдельный микроб «был сам за себя» и теоретически имел возможность вернуться к самостоятельной жизни вне коллектива. В этом сообщество мата схоже с муравейником – каждый муравей тоже может в любой момент покинуть собратьев – но долго ли он протянет в этом жестоком мире? Как и в муравейнике, жильцы бактериальной колонии имели свои обязанности. «Настройка» этого сообщества происходила в зависимости от меняющихся условий среды.

      Первоначально бактериальные маты, вероятно, состояли из двух слоев, то есть это был еще не мат, а так – биопленка. Ее верхний этаж населяли аноксигенные фототрофы, которые к этому времени научились синтезировать органику из углекислого газа атмосферы. Но чтобы преобразовать энергию света в энергию электронов силенок им не хватало, и они отнимали электроны у того же железа, растворенного в водах первичного океана. Тут им на помощь приходили электробактерии. Современные исследования показывают, что эти последние могут объединяться в «нанопровода» длиной до нескольких сантиметров (вполне достаточно, при «стандартной» толщине пленки в 1—2 см) и переносить электрон по живой электроцепи34. Эдакий живой «электропровод», опускался в «подпол», нащупывал в мутной воде ион железа, забирал у него электрон и передавал в верхние слои мата собратьям для пропитания, с помощью которого они и превращали углерод углекислого газа в органические молекулы.

      Нижний слой биопленки был представлен «падальщиками». Здесь обитали бродильщики, которые питались «чем бог послал» – отмершей органикой верхнего слоя и отжившими свой век (сгоревшими на работе, так сказать) электрическими бактериями. Этот этаж они делили с анаэробными хемолитотрофами: серными бактериями, железобактериями и другими, которые занимались переработкой и утилизацией горных пород.

      Пытаясь защититься от жесткого ультрафиолетового излучения, бактерии верхнего слоя выделяли липкую субстанцию

Скачать книгу


<p>34</p>

Kato S., Hashimoto K., Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals // Proceedings of the National Academy of Sciences. 2012, V. 109 (25). 10042—10046.