История античной науки. Открытия великих ученых и мыслителей древности. Джордж Сартон

Чтение книги онлайн.

Читать онлайн книгу История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон страница 11

История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон

Скачать книгу

сочетали гражданский год (хааб), состоящий из 365 дней, с ритуальным периодом (цолькин), состоящим из 260 дней; сочетание давало «длинный год», или «связку лет», как они это называли, из 18 980 дней (= 52 хааб = 73 цолькин)[3].

      Обычные китайцы не занимались такими размышлениями; им ба гуа и цзя цзы были такими же естественными, как времена года или фазы Луны, однако привычка к численным категориям у них глубоко укоренилась. Некоторое желание объединять вещи попарно, по три и так далее существует у каждого (оно выражает инстинктивное стремление к порядку и симметрии, основополагающее не только для науки, но и для искусства), но китайцы позволили своему стремлению развиваться свободнее, чем другие народы. Таким образом, им знакомо большее количество разрядов, чем, скажем, для нас четыре основные точки; они группируют по 2, 3,4, 5, 6, 7, 8, 9, 10, 12, 13, 17, 18, 24, 28, 32, 72, 100. У.Ф. Майерс перечислил 317 таких групп, и я уверен, что его список можно продолжить. Конечно, многие из этих групп более позднего происхождения; другие будут добавлены в будущем, но первоначальный замысел почти так же древен, как и сама китайская цивилизация.

      Мы очень близко подошли к математике, но затем нас отнесло в сторону. Должно быть, в прошлом подобное происходило много раз; то же самое происходит уже с нами. Любую научную идею можно исказить – и она часто искажается; здесь ничего не поделаешь. Любое орудие можно использовать как с добрыми, так и с дурными целями.

      Возвращаемся от фантазии к реальности; возможно, своим развитием арифметика обязана тому, что наши предки не останавливались на небольших и знакомых категориях. Им приходилось многое считать, в том числе сравнительно большие количества. Вождь племени, который, что вполне естественно, хотел оценить свои запасы, задавался вопросом, сколько у него воинов, сколько лошадей, овец и коз. Короче говоря, требовалась перепись, и, даже если племя было маленьким, такая перепись быстро приводила к числам, превышающим количество пальцев на руках. Как же вождь справлялся с задачей? В своем замечательном рассказе о переписи, которую проводил раджа Ломбока (острова к востоку от Бали), А.Р. Уоллес подробно останавливается на возникших неизбежных математических затруднениях. В результате раджа приказал производить подсчеты с помощью многочисленных связок стрел. Как он считал стрелы? Помним, что группирование – основа счета. Каждый язык демонстрирует наличие, как выражаются математики, основания системы счисления. Таким основанием часто бывала пятерка (у многих американских племен), иногда 20 (у майя), но чаще всего 10. Одни основания системы счисления были популярнее других, потому что почти каждый первобытный человек пользовался одним и тем же калькулятором: пальцами рук и ног. Если он ограничивался пальцами одной руки (или ноги), основанием служила пятерка; если он пользовался обеими руками (или ногами), основанием служил десяток. Если учитывались все пальцы на руках и ногах, за основание принималось число 20. Счет по пальцам ног был вполне естественным для теплых стран, где люди ходили босиком. Во многих языках,

Скачать книгу


<p>3</p>

Подробнее см.: Morley Silvanus Griswold. The ancient Maya. Stanford: Stanford University Press, 1946. C. 265–274 [Isis 37, 245 (1947); 39, 241 (1948)].