OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода. NemtyrevAI
Чтение книги онлайн.
Читать онлайн книгу OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода - NemtyrevAI страница 2
* 1966 – создание первого сегментатора изображений
* 1970-е – разработка алгоритмов для обнаружения краев и границ объектов
* 1980-е – появление первых коммерческих систем компьютерного зрения
* 1990-е – появление систем компьютерного зрения, основанных на глубоком обучении и искусственных нейронных сетях
* 2000-е – появление систем компьютерного зрения, работающих в реальном времени
* 2010-е – активное развитие компьютерного зрения в области искусственного интеллекта, самое управления, дополненной реальности, компьютерных игр и социальных сетей.
В настоящее время обнаружение объектов является важной задачей в таких областях, как автономное вождение, видеонаблюдение, медицинская визуализация, управление производством и робототехника. Например, в автономном вождении обнаружение объектов используется для определения расположения других транспортных средств, пешеходов и препятствий на дороге. В видеонаблюдении обнаружение объектов позволяет обнаруживать и отслеживать движущиеся объекты на видеопотоке. В медицинской визуализации обнаружение объектов используется для выделения анатомических структур и патологий на медицинских изображениях.
На протяжении многих лет были разработаны различные методы обнаружения объектов, начиная от традиционных методов, основанных на признаках, до современных методов, основанных на глубоком обучении. В этой книге мы рассмотрим основные методы обнаружения объектов, их преимущества и недостатки, а также способы их применения в реальных задачах.
Книга состоит из семи глав. В первой главе мы кратко обсудим основные концепции компьютерного зрения и задачи обнаружения объектов. Во второй главе мы рассмотрим традиционные методы обнаружения объектов, основанные на признаках, такие как метод Хаара и метод гистограмм направленных градиентов (HOG). В третьей главе мы обсудим современные методы обнаружения объектов, основанные на глубоком обучении, такие как R-CNN, Fast R-CNN, Faster R-CNN и YOLO. В четвертой главе мы рассмотрим способы усовершенствования методов обнаружения объектов, такие как использование предварительного обучения, ансамблевых методов и повышение качества данных. В пятой главе мы обсудим приложения обнаружения объектов в различных областях, таких как автономное вождение, видеонаблюдение, медицинская визуализация, управление производством и робототехника. В шестой и седьмой главе создадим приложения для распознавания объектов.
Мы надеемся, что эта книга поможет вам получить основные знания в области обнаружения объектов в компьютерном зрении и применить их в реальных задачах. Мы также надеемся, что эта книга станет хорошим стартовым пунктом для будущих исследований в этой области.
В следующих главах мы будем детально рассматривать основные методы обнаружения объектов и способы их применения в реальных задачах. Мы начнем с традиционных методов, основанных на признаках, и постепенно