Искусственный интеллект. С неба на землю. Джимшер Бухутьевич Челидзе
Чтение книги онлайн.
Читать онлайн книгу Искусственный интеллект. С неба на землю - Джимшер Бухутьевич Челидзе страница 10
Также нужны и сложные ИИ-модели (на порядки сложнее нынешних) и их сочетание (не только LLM для анализа запросов). То есть придется экспоненциально увеличивать количество нейронов, выстраивать связи между нейронами, а также координировать работу различных сегментов.
При этом надо понимать, что если человеческие нейроны могут быть в нескольких состояниях, а активация может происходить «по-разному» (да простят меня биологи за такие упрощения), то машинный ИИ – упрощенная модель, которая так не умеет. Условно говоря, машинные 80—100 млрд нейронов не равны человеческим 80—100 млрд. Машине потребуется больше нейронов для решения аналогичных задач. Тот же GPT4 оценивают в 100 трлн параметров (условно нейронов), и он все равно уступает человеку.
Все это приводит к нескольким факторам.
Первый фактор – рост сложности всегда приводит к проблемам надежности, увеличивается количество точек отказа.
Сложные ИИ-модели трудно как создавать, так и поддерживать от деградации во времени, в процессе работы. ИИ-модели нужно постоянно «обслуживать». Если этого не делать, то сильный ИИ начнет деградировать, а нейронные связи будут разрушаться, это нормальный процесс. Любая сложная нейросеть, если постоянно не развивается, начинает разрушать ненужные связи. При этом поддержание взаимосвязей между нейроннами – энергозатратная задача. ИИ всегда будет оптимизироваться и искать наиболее эффективное решение задачи, а значит, начнет отключать ненужные потребители энергии.
То есть ИИ станет похожим на старика с деменцией, а срок «жизни» сильно сократится. Представьте, что может натворить сильный ИИ с его возможностями, но который при этом будет страдать потерей памяти и резкими откатами в состояние ребенка? Даже для текущих ИИ-решений это актуальная проблема.
Давайте приведем пару простых примеров из жизни.
Можно сравнить создание сильного ИИ с тренировкой мышц человека. Когда мы только начинаем заниматься в спортивном зале и увлекаться силовыми занятиями, бодибилдингом, то прогресс идет быстро, но чем дальше, тем ниже КПД и рост результатов. Нужно все больше ресурсов (времени, нагрузок и энергии из пищи) для прогресса. Да даже просто удержание формы становится все более сложной задачей. Плюс рост силы идет от толщины сечения мышцы, а вот масса растет от объема. В итоге мышца в определенный момент станет настолько тяжелой, что не сможет сама себя двигать, а может даже и сама себя повредить.
Еще один пример сложности создания, но уже из области инженерии – гонки Формулы 1. Так, отставание в 1 секунду можно устранить, если вложить 1 млн и 1 год. Но вот чтобы отыграть решающие 0,2 секунды, может потребоваться уже 10 млн и 2 года работы. А фундаментальные ограничения конструкции машины могут заставить вообще пересмотреть всю концепцию гоночной машины.
И даже если посмотреть на обычные машины, то все точно так же. Современные автомобили