Неизведанная территория. Как «большие данные» помогают раскрывать тайны прошлого и предсказывать будущее нашей культуры. Эрец Эйден
Чтение книги онлайн.
Читать онлайн книгу Неизведанная территория. Как «большие данные» помогают раскрывать тайны прошлого и предсказывать будущее нашей культуры - Эрец Эйден страница 7
Поскольку в книгах содержатся длинные данные, оцифрованные книги не ограничиваются описанием современной жизни, в отличие от большинства других больших массивов данных. Книги могут показать нам, как менялась наша цивилизация на протяжении довольно больших периодов времени – превышающих не только человеческую жизнь, но и жизни целых государств.
Книги представляют собой отличный массив данных еще и вот почему. Они охватывают широкий круг тем и демонстрируют различные точки зрения.
Об изучении масштабной коллекции книг можно думать как об изучении большого количества людей, многие из которых к моменту изучения уже мертвы. В исследованиях по истории и литературе книги, относящиеся к определенному времени и месту, становятся чуть ли не самыми важными источниками информации об этом времени и месте.
Это заставило нас предположить, что, изучив через цифровую линзу книги проекта Google, мы сможем создать новый «скоп» для изучения человеческой истории. И мы знали – сколько бы времени ни потребовалось, мы сможем изучить эти данные.
Больше данных – больше проблем
С большими данными появляются не только новые возможности для понимания окружающего мира, но и новые научные проблемы[29].
Первая серьезная проблема заключается в том, что большие данные и данные, которыми оперируют ученые, структурированы совершенно по-разному. Ученые предпочитают отвечать на тщательно сформулированные вопросы с помощью элегантных экспериментов, дающих воспроизводимые и точные результаты. Однако большие данные часто сопровождаются неразберихой. Типичный массив больших данных представляет собой смесь фактов и измерений, сделанных без какой-либо научной цели и с использованием далеко не универсальных процедур. Он изобилует ошибками и огромным количеством пугающих пробелов – например, недостающими элементами информации, важными для любого разумного ученого. Такие ошибки и упущения часто непоследовательны, даже в рамках единого массива данных. Это связано с тем, что большие массивы данных часто создаются путем объединения большого количества более мелких массивов данных. Очевидно, что некоторые из компонентов массивов данных более надежны, чем другие, и у каждого из них есть свои особенности. Хорошим примером может служить социальная сеть Facebook. Добавление людей «в друзья» может означать совершенно разное для разных людей. Кто-то делает это довольно свободно. Кто-то более осторожен. Некоторые добавляют в друзья коллег, другие этого не делают. Отчасти работа с большими данными как раз и требует,
28
Этот термин не так давно предложен исследователем социальных сетей Сэмюелем Арбесманом. См. Arbesman Samuel. Stop Hyping Big Data and Start Paying Attention to Long Data // Wired (29 января 2013 г.), доступно в сети Интернет: http://goo.gl/X7oEC.
29
Хотя лучшие эмпирические массивы данных малодоступны, социальные сети остаются довольно перспективным полем для исследований. См., к примеру: Watts Duncan J., Strogatz Steven H. Collective Dynamics of «Small-World» Networks // Nature 393, no. 6684 (1998). P. 440–442. Доступно в сети Интернет: http://goo.gl/be3Xmi; Barabаsi Albert-Lаszlу, Albert Reka. Emergence of Scaling in Random Networks // Science 286, no. 5439 (1999). P. 509–512. Доступно в сети Интернет: http://goo.gl/eESUa8; Milo Ron et al. Network Motifs: Simple Building Blocks of Complex Networks // Science 298, no. 5594 (2002). P. 824–827.