Математика для взрослых. Лайфхаки для повседневных вычислений. Кьяртан Поскитт

Чтение книги онлайн.

Читать онлайн книгу Математика для взрослых. Лайфхаки для повседневных вычислений - Кьяртан Поскитт страница 4

Математика для взрослых. Лайфхаки для повседневных вычислений - Кьяртан Поскитт

Скачать книгу

утомительное занятие, однако эта таблица имеет слишком большую практическую ценность, чтобы просто забыть о ней как о страшном сне. Работать с ней будет гораздо легче, если вы освоите несколько трюков, быстрых приемчиков и прочих секретов взаимосвязи чисел в таблице.

      Тайны таблицы умножения

      В этой таблице показаны все результаты умножения от 1 × 1 до 10 × 10. Всего здесь 100 результатов. Первым делом давайте избавимся от некоторых из них.

      При умножении на 10 в конец числа просто добавляется ноль. Это слишком легко и при переходе к умножению больших чисел нам не понадобится. Так что исключим из таблицы 10‑ю строку и 10‑й столбец.

      Если поменять множители местами, ответ останется тем же. Например, и 3 × 7 и 7 × 3 равно 21. Поэтому уберем из таблицы все повторяющиеся результаты.

      Итак, мы избавились от более чем половины ячеек. Посмотрим, что осталось.

      Числа в серых ячейках называются квадратами целых чисел, или просто квадратами. Это результаты умножения каждого числа на само себя. Например, вдоль каждой стороны шахматной доски 8 клеток, поэтому полное количество клеток на доске будет равняться восьми в квадрате. Записывают это так: 82, что соответствует 8 × 8 = 64.

      Если вы ненавидите зубрить таблицу умножения, можете заполнить ее ячейки еще одним способом. Сначала можно просто складывать нечетные числа 1, 3, 5, 7 и т. д. Начинаем с 1 + 3 = 4. Затем прибавляем 5, получаем 9, затем 7, получаем 16… Так вы вычислите квадраты всех чисел.

      Если взять любую ячейку с квадратом числа и вычитать из нее нечетные числа, начиная с 1, то получатся значения по диагонали, идущей в другую сторону от исходной ячейки.

      Таким образом, начав с 36 и отняв 1, получим 35, отняв 3, получим 32, вычтя 5, получим 27.

      (Сравнив эту диаграмму с таблицей умножения, вы убедитесь, что все совпадает.)

      Аналогичным способом, но с помощью четных чисел (2, 4, 6, 8…) можно заполнить и остальные ячейки. Посмотрите на диагональ, идущую ниже диагонали квадратов, ту, где стоят числа 2, 6, 12, 20… Эти значения можно получить, начав с 2, затем прибавив 4, затем 6, потом 8 и т. д. А взяв любое из этих чисел (например, 20), можно найти значения вдоль идущей в другую сторону диагонали – вычитая 2, затем 4, потом 6 (например, 20 − 2 = 18, 18 − 4 = 14 и 14 − 6 = 8).

      Такие последовательности нечетных и четных чисел позволяют вывести всю таблицу умножения, ни разу при этом не выполнив умножения как такового!

Фокус с тремя числами

      Возьмите три любых последовательных числа: при перемножении первого и последнего всегда получится значение на единицу меньше, чем квадрат числа посередине.

      Взяв числа 6, 7, 8 и сверившись с таблицей умножения, мы убедимся, что 6 × 8 = 48, а 7 × 7 (или 72) = 49.

      Так будет с любыми последовательно идущими числами. Если известно, что 1482 = 21 904, можете быть уверены, что 147 × 149 = 21 903.

      (Почему так

Скачать книгу