Математическое руководство по созданию компьютерных игр. Справочник. Алексей Патрашов

Чтение книги онлайн.

Читать онлайн книгу Математическое руководство по созданию компьютерных игр. Справочник - Алексей Патрашов страница 15

Математическое руководство по созданию компьютерных игр. Справочник - Алексей Патрашов

Скачать книгу

герой, сокращается до оного или работа на каждое объединение не влияет на отношение всех остальных.

      Первый из вопросов вычисления репутации состоит в забывании прежних заслуг или запоминании первых поступков. Этот вопрос решает общую оценку в игре влияния порядка двух одинаковых по величине, но противоположных по влиянию на репутацию поступков. Если упор сделан на прежние заслуги, то оценка важности должна убывать, а если помнят только последние заслуги, то оценка важности должна повышаться.

      Второй вопрос репутации состоит в величине каждой заслуги. Могут ли две небольшие заслуги оцениваться как одна большая? Можно ли просто складывать оценки заслуг? Ведь хорошо известно, что количество часто переходит в качество и сто раз помочь донести мешок и один раз защитить от разбойников это совсем не одно и то же. Для оценки влияния величины заслуги можно использовать какую-нибудь быстро возрастающую зависимость, чтобы отойти от простого суммирования и увеличить вклад больших заслуг.

      Как видно из рассмотренного, задача сводится к способу получения среднего значения из последовательности чисел, а также учёту порядка значений в заданной последовательности. Таким образом задача разделяется на две: определить среднее значение без учёта порядка и ввести способ учёта порядка в получение среднего значения.

      Вообще, вычисление любого вида неупорядоченного среднего возможно по Колмогорову. В зависимости от выбора функций можно получить практически любые приемлемые для использования результаты. Чаще всего используется среднее арифметическое. Среднее геометрическое в силу своего требования к положительности знака и среднее гармоническое в силу своего требования неравенства нулю всех членов ряда обычно не используются. Ниже приведена формула неупорядоченного среднего по Колмогорову, где u ― монотонная функция, имеющая областью допустимых значений все возможные значения исследуемых данных, а v ― функция, обратная u.

      Среднее по Колмогорову не учитывает порядок членов заданной последовательности, но введение весовой функции от порядкового номера позволяет это сделать. Если весовая функция является константой, то упорядоченное среднее превращается в неупорядоченное. Таким образом неупорядоченное среднее по Колмогорову является частным случаем упорядоченного среднего. Ниже приведена формула упорядоченного среднего по Колмогорову.

      где w ― весовая функция.

      Использование некоторых функций ограничено их монотонностью. Так при использовании степенных функций приходится ограничиваться, например, нечётными степенями потому, что чётные не обладают монотонностью, а дробные степени могут не иметь действительных значений для отрицательных чисел. На самом деле существует простое и эффективное решение для обхода

Скачать книгу