Менеджмент: конспект лекций. Денис Шевчук

Чтение книги онлайн.

Читать онлайн книгу Менеджмент: конспект лекций - Денис Шевчук страница 24

Менеджмент: конспект лекций - Денис Шевчук

Скачать книгу

лежат в некотором пространстве Х, возможно, достаточно сложной природы. Надо отметить также, что положение в следующий момент не может быть произвольным, оно связано с положением в предыдущий момент. Проще всего принять, что существует некоторое множество К такое, что

      Результат экономической деятельности за j– й период описывается величиной

      Зависимость не только от начального и конечного положения, но и от номера периода объясняется тем, что через номер периода осуществляется связь с общей экономической ситуацией. Желая максимизировать суммарные результаты экономической деятельности, приходим к постановке стандартной задаче динамического программирования:

      Таким образом, необходимо выбрать план

      удовлетворяющий приведенным ограничениям, на котором достигает максимума функционал Fm. Естественно, предполагается, что множество возможных переходов К таково, что область определения функционала Fm не пуста. При обычных математических предположениях максимум достигается.

      Как известно, задача (1) часто возникает во многих прикладных экономических и эконометрических областях, в макроэкономике (подробнее см. Шевчук Д.А., Шевчук В.А. Макроэкономика: Конспект лекций. – М.: Высшее образование, 2006), в логистике (управлении запасами).

      Широко предлагаются, исследуются и применяются модели, приводящие к следующему частному случаю задачи (1):

      Это – модели с дисконтированием (как известно, α – дисконт—фактор). Естественно попытаться выяснить, какими «внутренними» свойствами выделяются задачи типа (2) из всех задач типа (1). В частности, почему такой большой популярностью пользуется характеристика инвестиционного проекта NPV (Net Present Value – чистая текущая стоимость), относящаяся к характеристикам дисконтированного типа и подробно рассматриваемая ниже (глава 2.3).

      Представляет интерес изучение и сравнение между собой планов возможного экономического поведения на k шагов

      и

      (Естественно, предполагаем, что все пары соседних элементов входят в множество К). Естественно сравнение проводить с помощью описывающих результаты экономической деятельности функций, участвующих в задачах (1) и (2). Именно, будем говорить, что план Х1 лучше плана Х 2 при реализации с момента i, если

      Будем писать Х1 R(i)Х2, если выполнено неравенство (3), где R(i) – бинарное отношение на множестве планов, задающее упорядочение планов отношением «лучше».

      Ясно, что упорядоченность планов на k шагов, определяемая с помощью бинарного отношения R(i), может зависеть от i, т. е. «хорошесть» плана зависит от того, с какого момента i он начинает осуществляться. С точки зрения реальной экономики это вполне понятно. Например, планы действий, вполне рациональные

Скачать книгу