Дискретная математика. Краткий курс. Учебное пособие. Александр Анатольевич Казанский
Чтение книги онлайн.
Читать онлайн книгу Дискретная математика. Краткий курс. Учебное пособие - Александр Анатольевич Казанский страница 3
Третий случай взаимосвязи множеств A и B показан на рис. 1.1(с), при этом:
– некоторые элементы имеются в A, но их нет в B;
– есть элементы B, которых нет в А;
– есть элементы, которые принадлежат и A и B одновременно;
– есть элементы, которых нет ни в A, ни в B.
Рис. 1.1
Выводы диаграммы Венна
Аргументация в логике представляет собой полное или частичное обоснование какого-либо утверждения (заключения) с помощью других утверждений (посылок). Под выводом понимается утверждение того, что заключение следует из посылок. Вывод называется правильным тогда и только тогда, когда из конъюнкции посылок следует заключение, т. е. во всех случаях, когда посылки истинны, заключение тоже является истинным. Поскольку словесные утверждения по существу являются утверждениями о множествах, то поэтому их можно описывать диаграммами Венна.
Следовательно, диаграммы Венна можно использовать для проверки правильности выводов.
Пример 1.3
Показать, что следующий аргумент правильный:
A: Компьютеры, которые установлены на кафедре программирования, имеют LCD-дисплеи.
B: Компьютеры университета, которые используются в учебном процессе, соединены с Интернетом.
C: Ни один компьютер кафедры программирования не соединен с Интернетом.
D: Все компьютеры, которые используются в учебном процессе, не имеют LCD-дисплеев.
Здесь утверждения А, В и С означают посылки, а утверждение D ниже линии означает заключение. Вывод правильный, если заключение D логически следует из утверждений А, В и С.
Из утверждения А компьютеры с LCD-дисплеями входят в множество компьютеров университета, а из утверждения С следует, что множество компьютеров кафедры программирования и множество компьютеров, которые соединены с Интернетом, не пересекаются.
Из утверждения В следует, что компьютеры, которые используются в учебном процессе, образуют подмножество компьютеров, которые соединены с Интернетом, как это показано на рис. 1.2.
Рис. 1.2
Вывод является правильным, что видно из диаграммы Венна, поскольку множество компьютеров, используемых в учебном процессе, не пересекаются с множеством компьютеров с LCD-дисплеями.
Необходимо заметить, что, поскольку речь идет о проверке правильности вывода, истинность заключения при этом не рассматривается. Истинность заключения не является ни необходимым, ни достаточным условием правильности вывода. Если все посылки истинны, то заключение