Наша математическая вселенная. В поисках фундаментальной природы реальности. Макс Тегмарк

Чтение книги онлайн.

Читать онлайн книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк страница 20

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк Элементы

Скачать книгу

нагревать газообразный водород, он перейдет в четвертое состояние – плазму. Почему? Дело в том, что атом водорода – это просто электрон, обращающийся вокруг протона, а газообразный водород – это просто скопление таких атомов, сталкивающихся друг с другом. Когда температура поднимается, атомы движутся быстрее и сталкиваются друг с другом сильнее. Если становится достаточно горячо, удары оказываются настолько разрушительными, что атомы распадаются на части, а электроны и протоны начинают двигаться независимо. Водородная плазма – это и есть «суп» из свободных электронов и протонов.

      Рис. 3.3. Свету от далеких источников требуется время, чтобы достичь Земли, поэтому, заглядывая вдаль, мы смотрим и вглубь времен. За самыми далекими галактиками мы видим непрозрачную стену светящейся водородной плазмы, излучению которой потребовалось около 14 млрд лет, чтобы дойти до нас. В то время водород, который заполняет пространство сегодня, был разогрет настолько, что представлял собой плазму. Нашей Вселенной тогда было всего около 400 тыс. лет. (На основе рисунка группы NASA/WMAP.)

      Иными словами, Гамов предсказал, что наша Вселенная началась с горячего Большого взрыва и что плазма некогда заполняла весь космос. Причем особенно интересно, что предсказание проверяемо: если холодный газообразный водород прозрачен и невидим, то горячая водородная плазма непрозрачна и ярко светится, подобно поверхности Солнца. Это означает, что когда мы заглядываем дальше в космос (рис. 3.3), мы видим сначала старые галактики, за ними молодые галактики, затем прозрачный газообразный водород, а затем стену сияющей водородной плазмы. Мы не сможем увидеть, что за этой стеной, поскольку она непрозрачна, а значит, скрывает все, что было до нее. Более того, как показано на рис. 3.4, мы должны видеть это во всех направлениях, поскольку, куда бы мы ни взглянули, мы смотрим назад во времени. Получается, мы должны увидеть окружающую нас гигантскую плазменную сферу.

      В книге 1946 года Гамов, излагая теорию Большого взрыва, предсказал, что у нас должна иметься возможность наблюдать эту плазменную сферу. Он поручил своим ученикам Ральфу Альферу и Роберту Херману проработать этот вопрос, и несколько лет спустя они опубликовали статью, в которой предсказали, что эта сфера будет светиться с температурой около 5° выше абсолютного нуля, а значит, в основном будет испускать микроволны, а не видимый свет. К сожалению, Альферу и Херману не удалось убедить астрономов поискать фоновое космическое микроволновое излучение, и их работа была почти забыта, как и фридмановское открытие расширения Вселенной.

      Рис. 3.4. Все выглядит так, как если бы мы находились в центре гигантской плазменной сферы. Мы видим плазменную стену с предыдущего рисунка во всех направлениях.

      Как увидеть послесвечение

      К 1964 году группа принстонских ученых поняла, что доступный для наблюдения микроволновый сигнал

Скачать книгу