Геном человека: Энциклопедия, написанная четырьмя буквами. Вячеслав Тарантул

Чтение книги онлайн.

Читать онлайн книгу Геном человека: Энциклопедия, написанная четырьмя буквами - Вячеслав Тарантул страница 9

Жанр:
Серия:
Издательство:
Геном человека: Энциклопедия, написанная четырьмя буквами - Вячеслав Тарантул

Скачать книгу

перед ним задачи он использовал базальтовую плиту, которую обнаружили во время военной компании Наполеона в Египет и которая получила название Розеттский камень. На плите одновременно присутствовали две надписи: одна была иероглифическая, а другая – сделанная греческими буквами на греческом языке. К счастью, и язык, и письмо древних греков были в то время уже хорошо известны ученым. В результате сравнение двух текстов Розеттского камня привело к расшифровке египетской иероглифики. Этим путем и двинулись ученые при расшифровке генетического кода. Надо было сравнить два текста: текст, записанный в ДНК, с текстом, записанным в белке. Однако первоначально ученые не умели «читать» ДНК, а одного известного в то время белкового текста было недостаточно. Пришлось искусственно синтезировать разнообразные короткие фрагменты РНК и синтезировать на них в искусственных системах фрагменты белка. Весной 1961 года в Москве на Международном биохимическом конгрессе М. Ниренберг сообщил, что ему удалось «прочесть» первое «слово» в ДНКовом тексте. Это была тройка букв—ААА (в РНК, соответственно, УУУ), то есть три аденина, стоящие друг за другом, – которая кодирует аминокислоту фенилаланин в белке. Так было положено начало расшифровке генетического кода.

      Такой путь в конечном итоге вскоре привел к полной расшифровке генетического кода. Подтвердилось предположение Гамова, что код триплетный: одной аминокислоте в белках соответствует последовательность из 3 нуклеотидов в ДНК и РНК. Такие кодирующие тройки нуклеотидов – «слова» – получили название кодонов.

      Напомним, что еще Гамов столкнулся с парадоксом: из четырех нуклеотидов может быть построено 64 разных кодонов, а для построения белков используется только 20 различных аминокислот. Решение этого парадокса оказалось в следующем. Большинство аминокислот может кодироваться несколькими кодонами. После выяснения этого обстоятельства генетический код назвали вырожденным.

      В таблице 1 приведены кодоны, но не в самой ДНК, а в РНК–посреднике (матричной РНК, или мРНК), образующейся на ДНК, и соответствующие им аминокислоты в белках.

      Кроме того, как видно из таблицы, реально для кодирования используются не все возможные кодоны. Три из этих «лишних» кодонов выполняют функцию стоп–сигналов, обеспечивая прекращение синтеза белковой цепи.

      Если внимательно посмотреть на таблицу 1, то видно, что вырожденность генетического кода носит не совсем случайный характер. Хотя код триплетный, основную нагрузку несут первые два нуклео–тида в каждом кодоне. Чаще всего в разных кодонах, кодирующих одну и ту же аминокислоту, отличается лишь третий нуклеотид.

      Таблица 1. Генетический словарь. Указаны аминокислоты, встречающиеся в белках, и соответствующие им кодоны в комплементарной ДНК матричной РНК

      Генетический код первоначально был расшифрован у таких простых организмов, как фаги и бактерии. В дальнейшем оказалось,

Скачать книгу