Сервисный компас. Антон Саввин
Чтение книги онлайн.
Читать онлайн книгу Сервисный компас - Антон Саввин страница 9
Почему-то большинство людей считают математику абстрактной наукой, и занимаются ей как этаким упражнением для мозгов, чтобы натренированные мозги пригодились, но совершенно в других практических областях. Придерживаясь модели единства мира, готов объявить, что это не так и заявить о полном единстве математики и физики. Если вы что-то доказали или осознали математически, но не видите этому практических примеров, это не значит, что таких явлений не существует. Это просто сигнал-подсказка. Ищите эти явления, чтобы лучше понимать, как устроен мир.
Обучая детей математике, мы совершенно правильно даем сначала понимание натуральных чисел, потом целых, потом рациональных, получаемых в форме дробей, путем деления одного целого числа на другое. Великолепно! Внутри самодостаточного мира целых чисел и двух операций сложения и вычитания скрывается цельный более тонкий мир рациональных чисел. Люди, которым достаточно складывать и вычитать поштучно, могут и не догадываться о существовании более тонкого мира дробных чисел.
Мир дробных чисел действительно более тонкий, чем мир целых чисел. Целое число является частным случаем дробного, а значит, оно принадлежит, как своему более простому и более раннему по развитию миру, так и к более тонкому и более развитому миру. Дробные же числа, видят и знают о существовании своих некоторых собратьев – целых чисел, но в большинстве своем располагаются между ними, так что два рядом стоящих целых числа, например, 1 и 2, считающие, что стоят рядом друг с другом, даже и не подозревают, что между ними, оказывается, есть еще множество более тонких чисел: 3/2, 4/3, 5/4… А, впрочем, если они живут в своем мире целых чисел, выполняя только сложение и вычитание, и не знают операций умножение и деления, зачем им знать о более тонком мире? Они его просто не чувствуют, а поэтому и не признают. Нет, конечно же, некоторые из целых чисел, наверное, догадываются о существовании дробных, но не попробовав, что такое операция деления этого так и не поймешь, это так и останется догадкой. Запомните этот пример. Он нам еще пригодится.
Одно из проявлений неопределенности, как математического понятия – попытка использовать и в числителе и знаменателе дроби одновременно ноль или бесконечность.
Рис. Неопределенность значения дроби
Если признать единство физики и математики,