Характер физических законов. Ричард Филлипс Фейнман

Чтение книги онлайн.

Читать онлайн книгу Характер физических законов - Ричард Филлипс Фейнман страница 8

Характер физических законов - Ричард Филлипс Фейнман

Скачать книгу

и поэтому прекрасен. Он прост по форме. Я не говорю, что он действует просто – движение разных планет, их взаимное влияние могут быть очень запутанными, и определить, как движется каждая звезда в шаровом скоплении, не в наших силах. Закон действует сложно, но его коренная идея проста. Это и роднит все наши законы. Сами по себе они всегда оказываются простыми, хотя в природе действуют сложным образом.

      4. И наконец, закон тяготения универсален. Он простирается на огромные расстояния, и Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, – это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз – и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький образчик его может открыть нам глаза на строение целого.

      Лекция 2. Связь математики с физикой

      Если задуматься о приложениях математики и физики, то совершенно очевидно, что математика будет полезна там, где мы имеем дело с большим числом объектов в сложной обстановке. В биологии, к примеру, действие вируса на бактерию не дает никакой пищи для математики. В микроскоп мы увидим, что проворный маленький вирус находит какое-то место в причудливой бактерии (все они имеют разную форму) и либо вводит в нее свою ДНК, либо не вводит. Но если мы будем экспериментировать с миллионами и миллионами бактерий и вирусов, то сможем очень многое узнать о поведении вирусов в среднем. Мы можем использовать математику для того, чтобы находить среднее, для того, чтобы выяснить, развиваются ли вирусы в бактериях, какие виды развиваются и в каком количестве; подобным образом мы можем изучать генетику, мутации и т. п.

      Возьмем другой, более тривиальный пример. Представим себе огромную шахматную доску, на которой играют в шахматы или шашки. Каждый отдельный ход – операция не математическая или математически очень простая. Но нетрудно сообразить, что на доске с множеством фигур оценку наилучших ходов, ходов просто хороших или плохих можно сделать только после очень глубокого размышления, ибо каждый ход таит в себе огромное количество последствий. Тут необходимы абстрактные рассуждения и, следовательно, математика. Еще один пример – переключение в вычислительных машинах. Если у вас всего один переключатель, который может быть либо включен, либо выключен, то ничего особенно математического тут нет, хотя математики любят начинать именно с этого. Но чтобы предугадать поведение системы с множеством соединений и проводов, нужна математика.

      Я хочу сказать с самого начала, что математика приносит огромную пользу физике там, где речь идет о деталях сложных явлений, если установлены основные правила игры. И если бы я говорил только о взаимоотношении математики и физики, то большую часть времени

Скачать книгу