Как не ошибаться. Сила математического мышления. Джордан Элленберг

Чтение книги онлайн.

Читать онлайн книгу Как не ошибаться. Сила математического мышления - Джордан Элленберг страница 8

Как не ошибаться. Сила математического мышления - Джордан Элленберг

Скачать книгу

большом удалении от своего эмпирического источника и тем более во втором и третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от «реальности», над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями, оно все более и более становится искусством для искусства. Само по себе это неплохо, если она взаимодействует с примыкающими математическими дисциплинами, обладающими более тесными эмпирическими связями, или если данная математическая дисциплина находится под влиянием людей с исключительно развитым вкусом. Но существует серьезная угроза, что математическая дисциплина будет развиваться по линии наименьшего сопротивления, что вдали от источника поток разветвится на множество ручейков и дисциплина превратится в хаотическое нагромождение деталей и сложностей. Иначе говоря, при большом отдалении от эмпирического источника или после основательного абстрактного «инбридинга» (близкородственного скрещивания. – Ю. Д.) математической дисциплине грозит опасность вырождения.

      О какой математике пойдет речь в моей книге?

      Если ваше знакомство с математикой ограничивается школьной программой, это означает, что вам известна весьма ограниченная, а в какой-то степени даже ложная версия этого предмета. Школьная математика состоит главным образом из совокупности фактов и правил – фактов, которые нельзя оспаривать, и правил, которые предписаны высшим авторитетом и не подлежат сомнению. Такой подход рассматривает математические концепции как нечто непреложное.

      Но математика не неизменна. Даже если речь идет о базовых объектах изучения, таких как числа и геометрические фигуры, наше незнание гораздо больше знания. А то, что мы все же знаем, получено в результате огромных усилий, разногласий и недоразумений. Весь этот труд и смятение тщательно завуалированы в ваших учебниках.

      Безусловно, факты фактам рознь. Никогда не было особых споров по поводу того, что 1 + 2 = 3. Но можем ли мы действительно доказать, что 1 + 2 = 3, и как это можно сделать, – вопрос, который блуждает где-то между математикой и философией. Однако это совсем другая история, и мы вернемся к ней в конце книги. Правильность вычислений в данном случае не подлежит сомнению. Проблема кроется совсем в другом. Мы не раз столкнемся с ней на этих страницах.

      Математические факты могут быть простыми и сложными, поверхностными и глубокими, что делит математическую вселенную на четыре сектора:

      Базовые арифметические факты, такие как 1 + 2 = 3, относятся к категории простых и поверхностных. К этой же категории принадлежат и основные тождества, в частности sin(2x) = 2sin x × cos x или формула корней квадратного уравнения. Возможно, убедить себя в истинности таких тождеств немного труднее, чем в том, что 1 + 2 = 3, но по большому счету они не так уж сложны на концептуальном уровне.

      В сегменте

Скачать книгу