Ритм Вселенной. Как из хаоса возникает порядок. Стивен Строгац
Чтение книги онлайн.
Читать онлайн книгу Ритм Вселенной. Как из хаоса возникает порядок - Стивен Строгац страница 22
О полученных таким образом результатах Винер объявил в своей монографии, написанной в 1958 г., хотя его презентация носила подозрительно отрывочный, эскизный характер. Вместо того чтобы опубликовать фактические данные (как полагалось сделать согласно критериям, принятым в научном мире – если ученый собирался обнародовать данные, подтверждающие выдвинутую им гипотезу), он сделал приблизительный набросок измеренного спектра[37] – что-то наподобие графика, представленного выше на моем рисунке. Такие результаты показались слишком банальными и чересчур уж «правильными», чтобы быть похожими на правду. Складывалось впечатление, будто Винер что-то скрывает.
Однако его статья вовсе не заслуживала недоверия. Он утверждал, что «подтягивание» частот является универсальным механизмом самоорганизации, касающимся не только осцилляторов в мозге, но буквально всего в природе – как в живой, так и в неживой. Он настойчиво призывал биологов проводить эксперименты на лягушках, сверчках и даже на светлячках Юго-Восточной Азии задолго до появления в научной литературе статей об их синхронном мерцании. В 1961 г. он писал: «Не отваживаясь высказываться по поводу возможного исхода экспериментов, которые еще не проводились, я все же полагаю, что это направление исследований является весьма многообещающим и не слишком сложным»[38].
Его следующей задачей была разработка подробной теории «подтягивания» частот.
К сожалению, когда он попытался подкрепить свои догадки строгими математическими доказательствами, он столкнулся с непреодолимыми трудностями. Он представил ряд грубых рассчетов, но они выглядели весьма неуклюже и вели в никуда. Винер умер в 1964 г., так и не решив одну из важнейших для себя задач. Годом позже одному из студентов удастся найти правильный подход к ее решению.
В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими инструментами биологи в то время, как правило, не пользовались.
Когда Уинфри размышлял над проблемой группового
37
Спектр с двойным «проседанием» воспроизведен по диаграмме на стр. 69 книги Norbert Wiener,
38
«Не отваживаясь высказываться…»