Современная логика. А. А. Ивин
Чтение книги онлайн.
Читать онлайн книгу Современная логика - А. А. Ивин страница 10
Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики Н. Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника были бы невозможны без использования алгебры логики – этого исторически первого раздела современной логики. В управляющих схемах, применяемых в ЭВМ, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов, богатые возможности использовать для их осуществления автоматические машины. «Математическая логика, – заключает математик Г. Поваров, – является необходимым инструментом для машинизации умственного труда».
Современная логика находит широкие приложения не только в кибернетике, но и во многих других областях науки и техники. Очерчивая эти приложения, американский логик Э. Беркли пишет: «Математическая логика используется при исследовании правил, условий и договоров, при проектировании электрических схем для вычислительных машин, телефонных систем и регулирующих устройств, при программировании автоматических вычислительных машин и вообще при описании и проектировании многих типов схем и механизмов». Столь широкие технические приложения современной логики покажутся особенно впечатляющими, если вспомнить, что еще лет пятьдесят тому назад она казалась большинству весьма абстрактной математической дисциплиной, далекой от практического применения.
Сейчас логический анализ правильного мышления активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так:
1. Исследование логических особенностей дедуктивных наук. Этот раздел достаточно глубоко и всесторонне разработан математиками и логиками. Многие результаты, полученные здесь (например, теорема Гёделя о неполноте и др.) имеют принципиальное философско-методологическое значение.
2. Применение логического анализа к опытному знанию. К этой сфере относятся изучение логической структуры теорий, способов их эмпирического обоснования, исследование различного рода правдоподобных рассуждений (индуктивный вывод, аналогия, моделирование, методы установления причинной связи на основе наблюдения и эксперимента и т. п.), трудностей применения теорий на практике и т. д. Особое место занимают проблемы, связанные с изучением смыслов и значений теоретических и эмпирических терминов, с анализом семантики таких ключевых терминов, как закон, факт, теория,