Современная логика. А. А. Ивин
Чтение книги онлайн.
Читать онлайн книгу Современная логика - А. А. Ивин страница 27
Возможность всех этих и подобных им доказательств означает, что принцип математической индукции имеет строго ограниченную область приложения. Он не должен применяться, в частности, в рассуждениях об объектах, обозначаемых неточными, расплывчатыми понятиями.
Возникает, однако, вопрос: благодаря каким свойствам математических понятий парадоксы, подобные описанным, не могут появиться в математике? В чем состоит та особая «жесткость» математических объектов, которая дает возможность распространить на них математическую индукцию? Или, говоря иначе, какие именно объекты являются «математическими», подпадающими под действие принципа математической индукции?
Из этих вопросов можно сделать, в частности, вывод, что при обосновании математики принцип математической индукции не должен приниматься в качестве самоочевидного и исходного.
Характерная особенность неточных понятий заключается в том, что с их помощью можно конструировать неразрешимые высказывания. Относительно таких высказываний невозможно решить, истинны они или нет, как, скажем, в случае высказываний: «Человек тридцати лет – молод» и «Тридцать лет – это средний возраст».
Естественно, что наука стремится исключать неточные понятия, как и содержащие их неразрешимые высказывания из своего языка. Однако ей не всегда удается это сделать. Многие ее понятия заимствованы из повседневного языка, модификация и уточнение их далеко не всегда и не сразу приводят к успеху.
Неточными являются, в частности, обычные понятия, связанные с измерением пространства и времени. На это впервые обратил внимание А. Эйнштейн. Он показал, что понятия «одновременные события» и «настоящее время» не являются точными. Легко сказать, одновременны или нет события, происходящие в пределах восприятия человека. Установление же одновременности удаленных друг от друга событий требует синхронизации часов, сигналов. Содержание обычного понятия одновременности не определяет никакого метода, дающего хотя бы абстрактную возможность суждения об одновременности этих событий. Точно так же обстоит дело с понятием пространственного совпадения.
То, что понятия в большинстве своем являются неточными, означает, что каждый язык, включая и язык любой научной теории, более или менее неточен. Сопоставление теории, сформулированной в таком языке, с реальными и эмпирически устанавливаемыми сущностями всегда обнаруживает определенное расхождение теоретической модели с реальным миром. Обычно это расхождение относят к проблематике, связанной с приложимостью теории, и оно оказывается тем самым в известной мере завуалированным. Но это не означает, конечно, что его нет.
Особенно остро стоит в этом плане вопрос о приложимости к эмпирической реальности наиболее абстрактных теорий – логических и математических.
Применительно к математике