The Principles of Biology, Volume 1 (of 2). Spencer Herbert

Чтение книги онлайн.

Читать онлайн книгу The Principles of Biology, Volume 1 (of 2) - Spencer Herbert страница 2

Автор:
Жанр:
Серия:
Издательство:
The Principles of Biology, Volume 1 (of 2) - Spencer Herbert

Скачать книгу

readiness displayed by organic matters to undergo those changes in the arrangement of parts which we call development, and those transformations of motion which we call function.

      Considering them chemically instead of physically, it is to be remarked that three out of these four main components of organic matter, have affinities which are narrow in their range and low in their intensity. Hydrogen, it is true, may be made to combine with a considerable number of other elements; but the chemical energy which it shows is scarcely at all shown within the limits of the organic temperatures. Of carbon it may similarly be said that it is totally inert at ordinary heats; that the number of substances with which it unites is not great; and that in most cases its tendency to unite with them is but feeble. Lastly, this chemical indifference is shown in the highest degree by nitrogen – an element which, as we shall hereafter see, plays the leading part in organic changes.

      Among the organic elements (including under the title not only the four chief ones, but also the less conspicuous remainder), that capability of assuming different states called allotropism, is frequent. Carbon presents itself in the three unlike conditions of diamond, graphite, and charcoal. Under certain circumstances, oxygen takes on the form in which it is called ozone. Sulphur and phosphorus (both, in small proportions, essential constituents of organic matter) have allotropic modifications. Silicon, too, is allotropic; while its oxide, silica, which is an indispensable constituent of many lower organisms, exhibits the analogue of allotropism – isomerism. No other interpretation being possible we are obliged to regard allotropic change as some change of molecular arrangement. Hence this frequency of its occurrence among the components of organic matter is significant as implying a further kind of molecular mobility.

      One more fact, that is here of great interest for us, must be set down. These four elements of which organisms are almost wholly composed, exhibit certain extreme unlikenesses. While between two of them we have an unsurpassed contrast in chemical activity; between one of them and the other three, we have an unsurpassed contrast in molecular mobility. While carbon, until lately supposed to be infusible and now volatilized only in the electric arc, shows us a degree of atomic cohesion greater than that of any other known element, hydrogen, oxygen, and nitrogen show the least atomic cohesion of all elements. And while oxygen displays, alike in the range and intensity of its affinities, a chemical energy exceeding that of any other substance (unless fluorine be considered an exception), nitrogen displays the greatest chemical inactivity. Now on calling to mind one of the general truths arrived at when analyzing the process of Evolution, the probable significance of this double difference will be seen. It was shown (First Principles, § 163) that, other things equal, unlike units are more easily separated by incident forces than like units are – that an incident force falling on units that are but little dissimilar does not readily segregate them; but that it readily segregates them if they are widely dissimilar. Thus, the substances presenting these two extreme contrasts, the one between physical mobilities, and the other between chemical activities, fulfil, in the highest degree, a certain further condition to facility of differentiation and integration.

§ 2. Among the diatomic combinations of the three elements, hydrogen, nitrogen and oxygen, we find a molecular mobility much less than that of these elements themselves; at the same time that it is much greater than that of diatomic compounds in general. Of the two products formed by the union of oxygen with carbon, the first, called carbonic oxide, which contains one atom3 of carbon to one of oxygen (expressed by the symbol CO) is a gas condensible only with great difficulty; and the second, carbonic acid, containing an additional atom of oxygen (CO2) assumes a liquid form also only under a pressure of about forty atmospheres. The several compounds of oxygen with nitrogen, present us with an instructive gradation. Nitrous oxide (N2O), is a gas condensible only under a pressure of some fifty atmospheres; nitric oxide (NO) is a gas which although it has been liquefied does not condense under a pressure of 270 atmospheres at 46.4° F. (8 °C.): the molecular mobility remaining undiminished in consequence of the volume of the united gases remaining unchanged. Nitrogen trioxide (N2O3) is gaseous at ordinary temperatures, but condenses into a very volatile liquid at the zero of Fahrenheit; nitrogen tetroxide (N2O4) is liquid at ordinary temperatures and becomes solid at the zero of Fahrenheit; while nitrogen pentoxide (N2O5) may be obtained in crystals which melt at 85° and boil at 113°. In this series we see, though not with complete uniformity, a decrease of molecular mobility as the weights of the compound molecules are increased. The hydro-carbons illustrate the same general truth still better. One series of them will suffice. Marsh gas (CH4) is gaseous except under great pressure and at very low temperatures. Olefiant gas (C2H4) and ethane (C2H6) may be readily liquefied by pressure. Propane (C3H8) becomes liquid without pressure at the zero of Fahrenheit. Hexane (C5H12) is a liquid which boils at 160°. And the successively higher multiples, heptane (C7H16), octane (C8H18), and nonane (C9H20) are liquids which boil respectively at 210°, 257°, and 302°. Pentadecan (C15H32) is a liquid which boils at 270°, while paraffin-wax, which contains the still higher multiples, is solid. There are three compounds of hydrogen and nitrogen that have been obtained in a free state – ammonia (NH3) is gaseous, but liquefiable by pressure, or by reducing its temperature to -40° F., and it solidifies at -112° F.; hydrazine (NH2– NH2) is liquid at ordinary temperatures, but hydrozoic acid (N3H) has so far only been obtained in the form of a highly explosive gas. In cyanogen, which is composed of carbon and nitrogen, (CN)2, we have a gas that becomes liquid at a pressure of four atmospheres and solid at -30° F. And in paracyanogen, formed of the same proportions of these elements in higher multiples, we have a solid which does not fuse or volatilize at ordinary temperatures. Lastly, in the most important member of this group, water (H2O), we have a compound of two difficultly-condensible gases which assumes both the fluid state and the solid state within ordinary ranges of temperature; while its molecular mobility is still such that its fluid or solid masses are continually passing into the form of vapour, though not with great rapidity until the temperature is raised to 212°.

      Considering them chemically, it is to be remarked of these diatomic compounds of the four chief organic elements, that they are, on the average, less stable than diatomic compounds in general. Water, carbonic oxide, and carbonic acid, are, it is true, difficult to decompose. But omitting these, the usual strength of union among the elements of the above-named substances is low considering the simplicity of the substances. With the exception of acetylene and possibly marsh gas, the various hydro-carbons are not producible by directly combining their elements; and the elements of most of them are readily separable by heat without the aid of any antagonistic affinity. Nitrogen and hydrogen do not unite with each other immediately save under very exceptional circumstances; and the ammonia which results from their union, though it resists heat, yields to the electric spark. Cyanogen is stable: not being resolved into its components below a bright red heat. Much less stable, however, are several of the oxides of nitrogen. Nitrous oxide, it is true, does not yield up its elements below a red heat; but nitrogen tetroxide cannot exist if water be added to it; nitrous acid is decomposed by water; and nitric acid not only readily parts with its oxygen to many metals, but when anhydrous, spontaneously decomposes. Here it will be well to note, as having a bearing on what is to follow, how characteristic of most nitrogenous compounds is this special instability. In all the familiar cases of sudden and violent decomposition, the change is due to the presence of nitrogen. The explosion of gunpowder results from the readiness with which the nitrogen contained in the nitrate of potash, yields up the oxygen combined with it. The explosion of gun-cotton, which also contains nitrogen, is a substantially parallel phenomenon. The various fulminating salts are all formed by the union with metals of a certain nitrogenous acid called fulminic acid; which is so unstable that it cannot be obtained in a separate state. Explosiveness is a property of nitro-mannite, and also of nitro-glycerin. Iodide of nitrogen detonates on the slightest touch, and often without any assignable cause. And the bodies which explode with the most tremendous violence of any known, are the chloride of nitrogen (NCl3) and hydrazoic acid (N3H). Thus these easy and rapid decompositions, due to the chemical indifference of nitrogen,

Скачать книгу


<p>3</p>

Here and hereafter the word "atom" signifies a unit of something classed as an element, because thus far undecomposed by us. The word must not be supposed to mean that which its derivation implies. In all probability it is not a simple unit but a compound one.