Essays: Scientific, Political, and Speculative, Volume II. Spencer Herbert
Чтение книги онлайн.
Читать онлайн книгу Essays: Scientific, Political, and Speculative, Volume II - Spencer Herbert страница 15
Perhaps the clearest comprehension of the interconnected growth of the sciences may be obtained by contemplating that of the arts, to which it is strictly analogous, and with which it is bound up. Most intelligent persons must have been occasionally struck with the numerous antecedents pre-supposed by one of our processes of manufacture. Let him trace the production of a printed cotton, and consider all that is implied by it. There are the many successive improvements through which the power-looms reached their present perfection; there is the steam-engine that drives them, having its long history from Papin downwards; there are the lathes in which its cylinder was bored, and the string of ancestral lathes from which those lathes proceeded; there is the steam-hammer under which its crank shaft was welded; there are the puddling furnaces, the blast-furnaces, the coal-mines and the iron-mines needful for producing the raw material; there are the slowly improved appliances by which the factory was built, and lighted, and ventilated; there are the printing engine, and the dye-house, and the colour-laboratory with its stock of materials from all parts of the world, implying cochineal-culture, logwood-cutting, indigo-growing; there are the implements used by the producers of cotton, the gins by which it is cleaned, the elaborate machines by which it is spun; there are the vessels in which cotton is imported, with the building-slips, the rope-yards, the sail-cloth factories, the anchor-forges, needful for making them; and besides all these directly necessary antecedents, each of them involving many others, there are the institutions which have developed the requisite intelligence, the printing and publishing arrangements which have spread the necessary information, the social organization which has rendered possible such a complex co-operation of agencies. Further analysis would show that the many arts thus concerned in the economical production of a child’s frock, have each been brought to its present efficiency by slow steps which the other arts have aided; and that from the beginning this reciprocity has been on the increase. It needs but on the one hand to consider how impossible it is for the savage, even with ore and coal ready, to produce so simple a thing as an iron hatchet; and then to consider, on the other hand, that it would have been impracticable among ourselves, even a century ago, to raise the tubes of the Britannia bridge from lack of the hydraulic press; to see how mutually dependent are the arts, and how all must advance that each may advance. Well, the sciences are involved with each other in just the same manner. They are, in fact, inextricably woven into this same complex web of the arts; and are only conventionally independent of it. Originally the two were one. How to fix the religious festivals; when to sow; how to weigh commodities; and in what manner to measure ground; were the purely practical questions out of which arose astronomy, mechanics, geometry. Since then there has been a perpetual inosculation of the sciences and the arts. Science has been supplying art with truer generalizations and more completely quantitative previsions. Art has been supplying science with better materials, and more perfect instruments. And all along the interdependence has been growing closer, not only between art and science, but among the arts themselves, and among the sciences themselves. How completely the analogy holds throughout, becomes yet clearer when we recognize the fact that the sciences are arts to one another. If, as occurs in almost every case, the fact to be analyzed by any science, has first to be prepared – to be disentangled from disturbing facts by the afore discovered methods of other sciences; the other sciences so used, stand in the position of arts. If, in solving a dynamical problem, a parallelogram is drawn, of which the sides and diagonal represent forces, and by putting magnitudes of extension for magnitudes of force a measurable relation is established between quantities not else to be dealt with; it may be fairly said that geometry plays towards mechanics much the same part that the fire of the founder plays towards the metal he is going to cast. If, in analyzing the phenomena of the coloured rings surrounding the point of contact between two lenses, a Newton ascertains by calculation the amount of certain interposed spaces, far too minute for actual measurement; he employs the science of number for essentially the same purpose as that for which the watchmaker employs tools. If, before calculating the orbit of a comet from its observed position, the astronomer has to separate all the errors of observation, it is manifest that the refraction-tables, and logarithm-books, and formulæ, which he successively uses, serve him much as retorts, and filters, and cupels serve the assayer who wishes to separate the pure gold from all accompanying ingredients. So close, indeed, is