Essays: Scientific, Political, and Speculative, Volume II. Spencer Herbert
Чтение книги онлайн.
Читать онлайн книгу Essays: Scientific, Political, and Speculative, Volume II - Spencer Herbert страница 24
I quite agree with Prof. Bain that “this doctrine is in the last degree questionable;” but I do not admit that this doctrine is implied by the definition of Abstract Science which I have given. I speak of Space and Time as they are dealt with by mathematicians, and as it is alone possible for pure Mathematics to deal with them. While Mathematics habitually uses in its points, lines, and surfaces, certain existences, it habitually deals with these as representing points, lines, and surfaces that are ideal; and its conclusions are true only on condition that it does this. Points having dimensions, lines having breadths, planes having thicknesses, are negatived by its definitions. Using, though it does, material representatives of extension, linear, superficial, or solid, Geometry deliberately ignores their materiality; and attends only to the truths of relation they present. Holding with Prof. Bain, as I do, that our consciousness of Space is disclosed by our experiences of Matter – arguing, as I have done in The Principles of Psychology , that it is a consolidated aggregate of all relations of co-existence that have been severally presented by Matter; I nevertheless contend that it is possible to dissociate these relations from Matter to the extent required for formulating them as abstract truths. I contend, too, that this separation is of the kind habitually made in other cases; as, for instance, when the general laws of motion are formulated (as M. Comte’s system, among others, formulates them) in such way as to ignore all properties of the bodies dealt with save their powers of taking up, and retaining, and giving out, quantities of motion; though these powers are inconceivable apart from the attribute of extension, which is intentionally disregarded.
Taking other of Prof. Bain’s objections, not in the order in which they stand but in the order in which they may be most conveniently dealt with, I quote as follows: —
“The law of the radiation of light (the inverse square of the distance) is said by Mr. Spencer to be Abstract-Concrete, while the disturbing changes in the medium are not to be mentioned except in a Concrete Science of Optics. We need not remark that such a separate handling is unknown to science.”
It is perfectly true that “such a separate handling is unknown to science.” But, unfortunately for the objection, it is also perfectly true that no such separate handling is proposed by me, or is implied by my classification. How Prof. Bain can have so missed the meaning of the word “concrete,” as I have used it, I do not understand. After pointing out that “no one ever drew the line,” between the Abstract-Concrete and the Concrete Sciences, “as I have done it,” he alleges an anomaly which exists only supposing that I have drawn it where it is ordinarily drawn. He appears inadvertently to have carried with him M. Comte’s conception of Optics as a Concrete Science, and, importing it into my classification, debits me with the incongruity. If he will re-read the definition of the Abstract-Concrete Sciences, or study their sub-divisions as shown in Table II., he will, I think, see that the most special laws of the redistribution of light, equally with its most general laws, are included. And if he will pass to the definition and the tabulation of the Concrete Sciences, he will, I think, see no less clearly that Optics cannot be included among them.
Prof. Bain considers that I am not justified in classing Chemistry as an Abstract-Concrete Science, and excluding from it all consideration of the crude forms of the various substances dealt with; and he enforces his dissent by saying that chemists habitually describe the ores and impure mixtures in which the elements, etc., are naturally found. Undoubtedly chemists do this. But do they therefore intend to include an account of the ores of a substance, as a part of the science which formulates its molecular constitution and the constitutions of all the definite compounds it enters into? I shall be very much surprised if I find that they do. Chemists habitually prefix to their works a division treating of Molecular Physics; but they do not therefore claim Molecular Physics as a part of Chemistry. If they similarly prefix to the chemistry of each substance an outline of its mineralogy, I do not think they therefore mean to assert that the last belongs to the first. Chemistry proper, embraces nothing beyond an account of the constitutions and modes of action and combining proportions of substances that are taken as absolutely pure; and its truths no more recognize impure substances than the truths of Geometry recognize crooked lines.
Immediately after, in criticizing the fundamental distinction I have made between Chemistry and Biology, as Abstract-Concrete and Concrete respectively, Prof. Bain says: —
“But the objects of Chemistry and the objects of Biology are equally concrete, so far as they go; the simple bodies of chemistry, and their several compounds, are viewed by the Chemist as concrete wholes, and are described by him, not with reference to one factor, but to all their factors.”
Issue is here raised in a form convenient for elucidation of the general question. It is true that, for purposes of identification , a chemist gives an account of all the sensible characters of a substance. He sets down its crystalline form, its specific gravity, its power of refracting light, its behaviour as magnetic or diamagnetic. But does he thereby include these phenomena as part of the Science of Chemistry? It seems to me that the relation between the weight of any portion of matter and its bulk, which is ascertained on measuring its specific gravity, is a physical and not a chemical fact. I think, too, that the physicist will claim, as part of his science, all investigations touching the refraction of light: be the substance producing this refraction what it may. And the circumstance that the chemist may test the magnetic or diamagnetic property of a body, as a means of ascertaining what it is, or as a means of helping other chemists to determine whether they have got before them the same body, will neither be held by the chemist, nor allowed by the physicist, to imply a transfer of magnetic phenomena from the domain of the one to that of the other. In brief, though the chemist, in his account of an element or a compound, may refer to certain physical traits associated with its molecular constitution and affinities, he does not by so doing change these into chemical traits. Whatever chemists may put into their books, Chemistry, considered as a science, includes only the phenomena of molecular structures and changes – of compositions and decompositions. 12 I contend, then, that Chemistry does not give an account of anything as a concrete whole, in the same way that Biology gives an account of an organism as a concrete whole. This will become even more manifest on observing the character of the biological account. All the attributes of an organism are comprehended, from the most general to the most special – from its conspicuous structural traits to its hidden and faint ones; from its outer actions that thrust themselves on the attention, to the minutest sub-divisions of its multitudinous internal functions; from its character as a germ, through the many changes of size, form, organization, and habit, it goes through until death; from the physical characters of it as a whole, to the physical characters of its microscopic cells, and vessels, and fibres; from the chemical characters of its substance in general to the chemical characters of each tissue and each secretion – all these, with many others. And not only so, but there is comprehended as the ideal goal of the science, the consensus of all these phenomena in their co-existences and successions, as constituting a coherent individualized group definitely combined in space and in time. It is this recognition of individuality in its subject-matter, that gives its concreteness to Biology, as to every other Concrete Science. As Astronomy deals with bodies that have their several proper names, or (as with the smaller stars) are registered by their positions, and considers each of them as a distinct individual – as Geology, while dimly perceiving in the Moon and nearest planets other groups of geological phenomena (which it would deal with as independent wholes, did not distance forbid), occupies itself with that individualized group presented by the Earth; so Biology treats either of an individual distinguished from all others, or of parts or products belonging to such an individual, or of structural or functional traits common to many such individuals that have been observed, and supposed to be common to others that are like them in most or all of their attributes. Every biological truth connotes a specifically individualized object, or a number
12
Perhaps some will say that such incidental phenomena as those of the heat and light evolved during chemical changes, are to be included among chemical phenomena. I think, however, the physicist will hold that all phenomena of re-distributed molecular motion, no matter how arising, come within the range of Physics. But whatever difficulty there may be in drawing the line between Physics and Chemistry (and, as I have incidentally pointed out in