Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок. Эдвард Торп

Чтение книги онлайн.

Читать онлайн книгу Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок - Эдвард Торп страница 39

Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок - Эдвард Торп

Скачать книгу

игру в отсутствие всех четырех тузов. Сравнив результаты с данными, уже полученными для полной колоды, я мог бы увидеть, как тузы влияют на игру. Через несколько дней ожидания я забрал из выходного лотка свою довольно толстую пачку перфокарт (мне вдруг пришло в голову, что я пытался исследовать карточную игру при помощи карт). Компьютер проделал вычисления, требовавшие тысячи человеко-лет, всего за десять минут машинного времени. Я смотрел на результаты с большим волнением: они должны были либо подтвердить мою правоту, либо сокрушить все мои надежды. Получалось, что исчезновение тузов приводит к преимуществу казино в размере 2,72 %: преимущество игрока уменьшалось на 2,51 % по сравнению с 0,21 %-м преимуществом, которое казино имело в общем случае. Хотя это означало большое увеличение преимущества казино, на самом деле это был превосходный результат.

      Он давал убедительное доказательство правильности того озарения, которое пришло ко мне в библиотеке УКЛА, – что в этой игре можно выиграть, а точнее, что по мере розыгрыша карт происходят большие изменения преимущества, как в пользу казино, так и в пользу игроков. Математические результаты также показывали, что если удаление определенного набора карт из колоды изменяет шансы на выигрыш в одну сторону, то добавление в колоду равного числа таких же карт должно привести к равному по величине изменению этих шансов в другую сторону. Это означало, что колода, «богатая», а не «бедная» тузами, должна давать игроку большое преимущество. Так, при увеличении содержания тузов в колоде в два раза, – например, когда все четыре туза присутствуют в числе двадцати шести оставшихся карт (половины колоды)[54], – преимущество игрока должно увеличиться приблизительно на 2,51 %, и в сочетании с исходным преимуществом заведения 0,21 % игрок должен получить чистое преимущество около 2,30 %.

      Каждые два или три дня я возвращался в вычислительный центр и забирал результаты очередного расчета, выполнение каждого из которых вручную заняло бы тысячу человеко-лет. Теперь я знал, что происходит при удалении из колоды четырех карт любого одного типа[55]. Наиболее невыгодным для игрока было изъятие тузов, за ними следовали десятки, удаление которых увеличивало преимущество заведения на 1,94 %. Однако изъятие «мелких» карт – двоек, троек, четверок, пятерок и шестерок – приносило игроку огромную выгоду. Наибольший эффект давало удаление пятерок: в этом случае исходное преимущество казино, равное 0,12 %, превращалось в гигантское преимущество игрока, составлявшее 3,29 %.

      Теперь я мог разработать множество разнообразных выигрышных стратегий на основе отслеживания разыгранных карт. Анализ, который я провел в МИТ на IBM 704, дал базовые результаты, легшие в основу системы подсчета пятерок, большей части системы подсчета десяток и концепции стратегии, которую я назвал абсолютной. В ней каждой карте присваивается некоторое число очков, пропорциональное тому воздействию, которое эта карта оказывает на игру: туз имеет значение –9, двойка – +5 и

Скачать книгу


<p>54</p>

Вероятность того, что все четыре туза входят в число последних 26 карт, составляет около 5,5 %. (прим. автора)

<p>55</p>

Позднейшие точные вычисления дают значения, несколько более благоприятные для игрока. Эти результаты также учитывают многочисленные изменения в правилах, установленных казино. Более подробную информацию см.: Thorp (1962, 1966), Griffin (1999), Wong (1994). (прим. автора)