Mastering Autodesk Revit Architecture 2016. Krygiel Eddy
Чтение книги онлайн.
Читать онлайн книгу Mastering Autodesk Revit Architecture 2016 - Krygiel Eddy страница 8
Building analysis can reach beyond just the design phase and into the whole building life cycle. Once the building has been constructed, the use of BIM doesn’t need to end. More advanced facilities management systems support tracking – and thereby trending – building use over time. By trending building use, you can begin to predict usage patterns and help anticipate future uses such as energy consumption or future expansion. This strategy can help you become more proactive with maintenance and equipment replacement because you will be able to “see” how equipment performance begins to degrade over time. Trending will also aid you in providing a more comfortable environment for building occupants by understanding historic use patterns and allowing you to keep the building tuned for optimized energy performance.
To maximize your investment in a BIM-based workflow, it’s necessary to apply a bit of planning. As in design, a well-planned and flexible implementation is paramount to a project’s success. By identifying goals on a project early on in the process, it allows BIM to be implemented efficiently to reach those objectives. An effective strategy answers three key questions about a project:
● What processes do we need to employ to achieve our project goals?
● Who are the key team members to implement those processes?
● How will we support the people and processes with technology or applications?
Ask these questions of your firm as a whole so you can collectively work toward expertise in a given area, be that sustainable design or construction or something else. Ask the same questions of an individual project as well so you can begin building the model in early stages for potential downstream uses. In both cases (firm-wide or project-based), processes will need to change to meet the goals you’ve established. Modeling techniques and workflows will need to be established. Analysis-based BIM requires different constraints and requirements than a model used for documentation or clash detection. If you’re taking the model into facilities management, you’ll need to add a lot of metadata about equipment but at a lower level of detail than if you were performing daylighting studies. Applying a new level of model integrity during a design phase can be a frustrating and time-consuming endeavor. Regardless of the goal, setting and understanding those goals early on in the project process is a prerequisite for success.
Focusing Your Investment in BIM
One of the common assumptions is that larger firms have a better opportunity than smaller firms in their capacity to take on new technologies or innovate. Although larger firms might have a broader pool of resources, much of the investment is proportionally the same. We have been fortunate enough to help a number of firms implement Revit over the years, and each has looked to focus on different capabilities of the software that best express their individual direction. Although these firms have varied in size and individual desire to take on risk, their investments have all been relatively equal. From big firms to small, the investment ratio consistently equates to about 1 percent of the size of the firm. If you consider a 1,000-person firm, that equals about 10 full-time people; however, scale that down to a 10-person firm, and that becomes 1 person’s time for five weeks.
The key to optimizing this 1-percent investment is focusing your firm’s energy and resources on the most appropriate implementation objectives.
Identifying the importance of visualization, analysis, and strategy to your process will help guide you in selecting areas of implementation within your own practice. If your investment (regardless of scale) is focused and well planned, it will yield strong results. When choosing areas of implementation or how much focus to give to these areas, there are no wrong answers. Just choose a path that reflects the comfort level of your firm while maintaining focus on achieving success.
We elaborate on most of these topics throughout the remainder of this book. Using real-world examples, we illustrate a variety of techniques to visualize, analyze, and strategize using Revit.
As you rethink the process of design and documentation, one of the fundamental changes you will need to address is staffing. A common misconception of project management when teams are first moving from CAD to BIM is that staffing the project will be the same in both workflows. This couldn’t be further from the truth because when the workflow changes, staffing allocations, the time to complete tasks, and the percentage of work by phase are all affected as a result of the changes.
Several years ago, Patrick MacLeamy, FAIA, set out to illustrate the fundamental benefit to more informed design that happened to be a by-product of building information modeling. The graph, which has come to be known as the MacLeamy Curve (Figure 1.11), is not intended to imply a simple shift in labor earlier in the design process; rather, it stresses the importance of being able to make higher-value decisions before it becomes too difficult to make changes to a design. The x-axis of the chart represents project phases from conceptual design through occupancy, whereas the y-axis represents the amount of effort in each phase.
Figure 1.11 The effort curves in the design and construction industry
Another way to think about this shift is as a diagram of leverage, as shown in Figure 1.12. Implementing BIM in earlier phases of a project gives you the greatest opportunity to add value to the overall compilation of building information delivered for a facility. When you begin BIM earlier, you may need to increase staff to build a better model or to perform energy analysis or preliminary quantity takeoffs; however, using a better tool like Revit software will not necessarily translate to the same labor used in a CAD-based project. You will find how this affects your team effort after a few BIM projects.
Figure 1.12 BIM provides the most leverage when it is implemented early in the design.
Source: Based on a graphic created by Lee Miller, HOK
With such a significant change in the effort behind a BIM-based project workflow, it’s also important to understand how this change affects the various roles and responsibilities for the project team. Project managers need to be able to predict staffing and time to complete tasks throughout the project phases and have relied on past precedent of staff and project types to do this. Because a BIM-based project can significantly alter the project workflow, many of the historic timetables for task completion are no longer valid. However, a BIM-based project can be broken down into a few primary roles that will allow you some level of predictability throughout the various project phases. Although the specific effort and staffing will vary between offices (and even projects), there are some general roles that will need to be accounted for on every project.
Here are three primary roles that should be considered on every BIM project:
Architect Generates design intent and coordinates issues such as material, code compliance, wall type, spatial program, and so on.
Modeler Creates 2D or 3D content that directly represents the design intent.
Drafter Works with annotations, sheet layout, view creation, and detail creation.
These roles represent efforts and general tasks that you need to take into account on any Revit project. On a large project, these roles could also represent individual people, whereas on a smaller project they might be all the same person fulfilling multiple roles. We’ll now explore