Quantitative Financial Risk Management. Galariotis Emilios

Чтение книги онлайн.

Читать онлайн книгу Quantitative Financial Risk Management - Galariotis Emilios страница 11

Quantitative Financial Risk Management - Galariotis Emilios

Скачать книгу

and inadequate measurement of correlation risks. The crisis also highlighted deficiencies in monitoring and managing counterparty limits and concentrations, ranging from poor selection of CCR metrics to inadequate infrastructure.

      The Basel II “Revised Framework” (BCBS 2004) was intended to promote a more forward-looking approach to capital supervision that encourages banks to identify and manage the risks they face. Treatment of CCR arising from over-the-counter (OTC) derivatives and repos in either trading or banking books was first set forth in an amendment to the original 1988 Basel Accord (BCBS 1988) treatments for the CCR of repo-style transactions. The Basel II framework (BCBS 2004) represents joint work with the International Organization of Securities Commissions (IOSCO) on the treatment of CCR for over-the-counter derivatives, repo-style transactions, and securities financing.

      The regulations specify three methods for calculating EAD for transactions involving CCR: the internal model method (IMM), a standardized method (SM), and the (at-the-time existing) current exposure method (CEM).

      Commonalities across Approaches to CCR

      Positions that give rise to CCR exposures share certain generic characteristics. First, the positions generate a credit exposure – the cost of replacing the transaction if the counterparty defaults, assuming there is no recovery of value. Second, exposures depend on one or more underlying market factors. Third, transactions involve an exchange of payments or financial instruments identified with an explicit counterparty having a unique PD.

      CCR for a position at any point in time equals a maximum of zero or replacement cost (market value) for each counterparty over tenure. This may include the use of collateral to mitigate risk, legal netting or “rights of offset” contracts, and the use of re-margining agreements. The fact that similar risk characteristics, products, and related activities with CCR are managed by institutions using similar methods and processes imply they may merit similar capital requirements. However, there are differences in rule treatment between OTC exposures and securities financing transactions (SFTs). SFTs include securities lending and borrowing, securities margin lending, and repurchase and reverse repurchase agreements.

      The Basel II revised framework (BCBS 2004) already provides three methods for SFTs: a simple approach, a comprehensive approach with both supervisory and nonsupervisory haircuts, and a value-at-risk (VaR) model.

An internal model method (IMM) to CCR is available for both SFTs and OTC derivatives, but the nonmodel methods available for the latter are not applicable to the former. Institutions use several measures to manage their exposure to CCR, including potential future exposure (PFE), expected exposure (EE), and expected positive exposure (EPE). Banks typically compute these using a common stochastic model as shown in Figure 2.1. PFE is the maximum exposure estimated to occur on a future date at a high level of statistical confidence, often used when measuring CCR exposure against credit limits. EE is the probability-weighted average exposure estimated to exist on a future date. EPE is the time-weighted average of individual expected exposures estimated for given forecasting horizons (e.g., one year). EPE is generally viewed as the appropriate EAD measure for CCR as such are treated similarly to loans, and EPE reduces incentives to arbitrage regulatory capital across product types; therefore, internal and standardized model methods employ this for EAD.

Figure 2.1 Expected positive exposure for CCR.

Consistent with the Basel I Revised Framework for credit risk, the EAD for instruments with CCR must be determined conservatively and conditionally on an economic downturn (i.e., a “bad state”; BCBS 1998). In order to accomplish such conditioning in a practical, pragmatic, and conservative manner, the internal and standardized model methods proposed scale EPE using “alpha” and “beta” multipliers. Alpha is set at 1.4 in both the internal model method and the standardized model method, but supervisors have the flexibility to raise alpha in appropriate situations. Banks may internally estimate alpha and adjust it both for correlations of exposures across counterparties and potential lack of granularity across a firm's counterparty exposures. The alpha multiplier is also viewed as a method to offset model error or estimation error. Industry and supervisors' simulations suggest alphas may range from approximately 1.1 for large global dealers to more than 2.5 for new users of derivatives with concentrated or no exposures. Supervisors proposed to require institutions to use a supervisory specified alpha of 1.4 with the ability to estimate a firm portfolio–specific alpha subject to supervisory approval and a floor of 1.2. To estimate alpha, a bank would compute the ratio of economic capital (EC) for counterparty credit risk (from a joint simulation of market and credit risk factors) to EC when counterparty exposures are a constant amount equal to EPE (see Figure 2.2). Under the internal model method, the resulting risk weight may be adjusted to reflect the transaction's maturity.

Figure 2.2 Effective EE and effective EPE for CCR.

      Banks may estimate EAD based on one or more bilateral “netting sets,” a group of transactions with a single counterparty subject to a legally enforceable bilateral netting arrangement. Bilateral netting is recognized for purposes of calculating capital requirements within certain product categories: OTC derivatives, repo transactions, and on-balance-sheet loans/deposits. However, under the BCBS Amended Accord and Revised Framework, netting across product categories is not recognized for regulatory capital computation purposes. The intent is to allow supervisors discretion to permit banks to net margin loans secured by purchased securities and executed with a counterparty under a legally enforceable master agreement. This is not intended to permit banks to net across different types of SFTs or to net SFTs against OTC derivatives that might be included in a prime brokerage agreement. The Basel cross-product netting rules recognize such between OTC derivatives and SFTs subject to national supervisor determination that enumerated legal and operational criteria are widely met. A bank should have obtained a high degree of certainty on the legal enforceability of the arrangement under the laws of all relevant jurisdictions in the event of a counterparty's bankruptcy. It is also important that the bank demonstrate to the supervisory authority that it effectively integrates the risk-mitigating effects of cross-product netting into its risk management systems. Requirements are added to those that already exist for the recognition of any master agreements and any collateralized transactions included in a cross-product netting arrangement. Netting other than on a bilateral basis, such as netting across transactions entered by affiliates under a cross-affiliate master netting agreement, is not recognized for regulatory capital computation.

      Summary of Regulatory Methods for CCR

      The BCBS has articulated the principle that banks should be allowed to use the output of their “own estimates” developed through internal models in an advanced EAD. In order to achieve this, the regulators permit qualifying institutions to employ internal EPE estimates of defined netting sets of CCR exposures in computing the EAD for capital purposes. In general, internal models commonly used for CCR estimate a time profile of EE over each point in the future, which equals the average exposure over possible future values of relevant market risk factors (e.g., interest rates, FX rates). The motivation for this was the need for more consistent treatments and is particularly critical if banks may make use of their own estimates to calculate EAD through an internal model.

      Relatively short-dated SFTs pose problems in measuring EPE because estimating a time profile of EE in an internal model only considers current transactions. For some SFT portfolios, the expected exposure might spike up rapidly in the first few days before dropping off sharply at maturity. However, a counterparty may enter new or roll over existing SFTs, generating new exposure not reflected in a current EE time profile. An additional problem arises when short-term are combined with long-term transactions, so that EE is U-shaped, which implies that if short-term transactions roll over, the decline in EE might understate the CCR amount.

Скачать книгу