Большое космическое путешествие. Нил Деграсс Тайсон
Чтение книги онлайн.
Читать онлайн книгу Большое космическое путешествие - Нил Деграсс Тайсон страница 41
А теперь – классные расчеты. Начнем с E = mc2. Эту формулу помнят все. Все знают, что ее придумал Эйнштейн, но немногие понимают ее смысл. Дедушка Альберт вывел ее в 1905 году. Как мы уже обсуждали, это уравнение означает следующее: некоторую массу можно преобразовать в энергию согласно такому отношению, где c соответствует колоссальной скорости света, а если ее возвести в квадрат – получается очень большая величина. Именно эта формула описывает мощь, заключенную в атомных бомбах. О происхождении этого уравнения и о Специальной теории относительности Эйнштейна речь пойдет в главе 18.
Если звезда обладает определенной массой и определенной светимостью – сколько она просуществует? Разумеется, то же самое можно спросить и о вашей машине с бензиновым двигателем: вы знаете, какова полная емкость бака, знаете, каков расход топлива на километр в литрах. Зная эти данные, можно предположить, как скоро в машине кончится бензин. Светимость звезды характеризует то, сколько энергии она излучает в единицу времени. Если умножить срок жизни звезды t на ее светимость L, то можно вычислить общее количество энергии, которую она сгенерирует в течение жизни, – tL. Нам известна светимость звезды, темпы расхода ее топлива, а также мы знаем, каковы запасы ее топлива (водорода). Таким образом, какова продолжительность жизни звезды на главной последовательности? Общая энергия, которую может выделить звезда в ходе термоядерного водородного синтеза, пропорциональна ее массе M. Как вы помните, E = mc2. Общая энергия, излучаемая звездой, пропорциональна M, а также пропорциональна tL, поэтому M пропорциональна tL. Соответственно t пропорциональна M/L. Если L пропорциональна M3,5, как я говорил выше, то t пропорциональна M/M3,5, либо, что то же самое, пропорциональна 1/M2,5. Чем массивнее звезда, тем меньше она просуществует!
Посмотрим, что это значит. Если срок жизни звезды пропорционален 1/M2,5, то звезда, которая вчетверо тяжелее Солнца, просуществует 1/42,5 солнечного века. Число 1/42,5 равно: один разделить на четыре в квадрате, умножить на квадратный корень из четырех. Квадратный корень из четырех равен двум, а четыре в квадрате равно 16. Соответственно срок жизни такой звезды, которая вчетверо тяжелее Солнца, составит 1/32 от солнечного. Солнце проведет в главной последовательности около 10 миллиардов лет. Соответственно звезда вчетверо тяжелее Солнца